#### ME 553: Product and Process Design Team 10 - Power Generating Door

Professor: Karthik Ramani

April 27<sup>th</sup>, 2010

Senthil Chandrasegaran Devarajan Ramanujan Andrew Szykula Charles Weaver

## **Idea Selection**



Complexity

#### Idea selected! Power generating door.

# **US Energy Consumption**

#### Energy use per capita

Primary energy use (before transformation to other end-use fuels) in kilograms of oil equivalent, per capita.



**Total US Residential and Commercial Energy Consumption**: Over 19 Quadrillion BTU (Lawrence Livermore National Laboratory, 2006)

# **Market Competition**

- No existing patents found for our product.
- The crank light and revolving door were the closest matches.



# **Product Functional Hierarchy**



# **Concept Selection**

#### Design Decision: Placement?



# **Concept Selection**

#### Design Decision: Import relative motion?



# **Concept Selection**

#### Design Decision: Where will the energy go?



### **Final Design**





### Final Design Component: Casing



#### Final Design Component: Casing Features



### Final Design Component: Dynamo and Flywheel

- Schmidt Original Dynamo – Chosen for power generation at low RPMS and high efficiency
- Flywheel steadies shaft rotation







### Final Design Component: Gearing Mechanism

- Baseplate brackets position gearing mechanism
- Overrunning clutch design allows power generation when door opens or closes.





Flywheel rotates in same direction regardless of opening or closing

# **Bill of Materials and Cost**

|                   |     | Procurement | Material  | Manufacturing          | Total     |
|-------------------|-----|-------------|-----------|------------------------|-----------|
| Part              | Qty | Cost (\$)   | Cost (\$) | Cost (\$)              | Cost (\$) |
| Dynamo            | 1   | 10          |           |                        | 10        |
| Wheels            | 2   | 2.25        |           |                        | 2.25      |
| Shafts            | 3   |             | 0.45      | 0.15                   | 0.6       |
| Flywheel          | 1   | 1.05        |           |                        | 1.05      |
| Bevel Gears       | 3   | 1.5         |           |                        | 1.5       |
| Overruning Clutch | 3   | 4.75        |           |                        | 4.75      |
| Casing and Cover  | 1   |             | 0.192     | 0.1                    | 0.292     |
| Mounting Plate    | 1   |             | 0.176     | 0.075                  | 0.251     |
| Fastners          | 8   | 0.8         |           |                        | 0.8       |
| Wires             | 2   | 0.35        |           |                        | 0.35      |
| LED Lamp          | 1   | 1.35        |           |                        | 1.35      |
|                   |     |             |           | <b>Total Estimated</b> | 22.10     |
|                   |     |             |           | Cost                   | 23.19     |

#### Life Cycle Analysis: Total Impact = 1.716 Pts



Comparing product stages; Method: Eco-indicator 99 (I) V2.04 / Europe EI 99 I/A / single score

#### Life Cycle Analysis: Impact Categories



Comparing product stages; Method: Eco-indicator 99 (I) V2.04 / Europe EI 99 I/A / weighting

#### How much electricity can we generate?

- Inputs for power simulation:
  - **Door Open Distance** 0
  - Time to Open 0
  - Time to Close 0

Power Generated (Watts)

- Parameters: •
  - Normal distributions 0
  - Monte Carlo simulation 0

Power Generated vs. Dynamo Speed



# **Energy Savings**

- 35W Fluorescent Lamp (Always on)
- > 23.52 KiloWatt Hours (In one month)
- \$1.94 a month in electricity consumption
- Return on Investment 18 months
- Can replace the infrared trigger

U.S. Energy Information Administration

Independent Statistics and Analysis

### Questions?

