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ABSTRACT
This paper examines students’ design exploration strate-

gies in a sustainability-focused structural optimization task. The
task was set up as a two-criteria optimization problem with the
goal of simultaneously minimizing the weight and an environ-
mental indicator for a pedal bracket design. Forty-two students
in an undergraduate computer-aided design class solved this task
as a week-long, take-home assignment. Our analysis shows the
number of design iterations and the number of failed iterations
were significant factors in determining overall performance on
the task. We also found that the final shape, the number of mate-
rial changes, and experiencing conflict in the objective functions
between iterations, did not significantly affect task performance.
Based on these findings, we discuss implications for computer-
aided optimization tools in sustainable product design.

1 INTRODUCTION
The engineering design process often requires balancing

multiple competing objectives within specified constraints. This
is especially true in sustainable product design, as mitigating a
product’s environmental impacts can negatively affect other ob-
jectives such as its performance, manufacturing cost, and de-
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velopment time. The ability to identify designs that are opti-
mal from this multi-objective perspective requires iterative ex-
ploration of the feasible design space. Human input and judg-
ment are a vital part of computer-aided engineering (CAE) tools
for design optimization [1]. Therefore, understanding designers’
exploration processes is an important step for creating optimiza-
tion tools in sustainable product design.

In this paper, we discuss exploration strategies adopted by
students in a structural optimization task with a focus on sus-
tainability. This task was set up as a surrogate of a real-world
sustainable design problem in order to adapt it to a classroom
setting. The overall focus of our study was twofold. First, to
verify if exploration patterns reported in previous studies—such
as poorly executed global searches [2] and challenges in under-
standing sensitivity of coupled variables [3]—were evident in the
sustainability-focused structural optimization task. Second, to
discover exploration patterns and usage workflows that can in-
form the creation of computer-aided optimization tools for sus-
tainable product design.

2 RELATED LITERATURE
2.1 Studies on design exploration

The design exploration process, especially from the point of
view of complex systems design has been extensively studied in

1 Copyright © 2018 by ASME

mailto:devr@eng.au.dk 


previous work. Fundamental challenges in solving such prob-
lems, include problem scale and coupling effects present in the
objectives [4]. Increasing the number of constraints and the types
of constraints has been shown to be negatively correlated to per-
formance in tasks modeled as constraint satisficing problems [5].
Austin et al.’s [2] study on complex systems optimization found
that students searched global spaces poorly, optimized a single
input parameter at a time, and preferred a trial-and-error strategy
drawing on their design history. Yu et al. [3] studied exploration
patterns in the design of a reverse osmosis system. The authors
found that participants with more domain knowledge were able
to better understand coupling effects in the given design param-
eters. They also found that the starting point in the design space
and making large, consistent step-sizes over iterations correlated
to task performance.

Ahmed et al. [6] found novice designers resort to trial and
error strategies that negatively affects their overall solution qual-
ity and increases the number of iterations. On the other hand,
experienced designers avoided these negative effects by perform-
ing an evaluation step before implementing their designs. They
also report that experienced designers were better aware of in-
volved trade-offs and questioned the future potential of a chosen
approach. Ball et al. [7] found that switching from breadth-first
mode of problem solving to depth-first modes is indicative of
the designer’s knowledge on how to effectively search the solu-
tion space. Relationships between design features and designers’
behavior were explored by Aleyani et al. [8] in a context-free pa-
rameter design task. Their study found a moderately negative
correlation between the number of actions taken by designers to
the overall task performance. On the other hand, the number of
actions taken by designers and their overall performance on the
task had a weak positive correlation to the error on the task.

Previous work has also looked at designing optimization
algorithms based on human behavior. These works include
creating novel optimization algorithms based on human behav-
ior [9, 10], and improving optimization algorithms by learn-
ing from successful human strategies [11]. Researchers have
also explored human-computer partnership in design optimiza-
tion [12, 13] as well as developing computer-support tools to aid
human decision making [14, 15].

2.2 Structural optimization & sustainable design
Structural optimization is a challenging design problem as it

can include a wide variety of objectives and constraints. Rules of
thumb and guidelines for synthesizing optimal structural mem-
bers are well established in engineering literature [16], and are
a part of existing undergraduate curricula [17]. Designers in the
industry often use such principles to guide the synthesis process.
CAE tools such as finite element analysis (FEA) are used as a
means for validating and refining synthesized designs. Conven-
tionally, the objectives of shape optimization are to (1) induce
a uniform stress distribution over as much of the body as pos-

sible, and (2) minimize the weight or volume of the material as
consistent with cost and manufacturing processes.

Papalambros & Chirehdast [18] studied processes used by
students for synthesizing a structural member. In this study, stu-
dent teams designed a bracket that supported a specified load,
with constraints such as ease of manufacture, ability to carry the
load without failure, and weight reduction. The authors observed
students mostly used intuition, some amounts of low fidelity pro-
totyping, and FEA for designing the bracket. Kwak [19] argues
that increasing the complexity of the design can inhibit manual
modifications to the design. This suggests that designers using
simple feature modifications or known shape heuristics are likely
to iterate more than those using complex shapes.

In the context of sustainable design, previous studies [20,
21, 22] have looked at integrating computer-aided design (CAD)
and sustainability assessment tools. Such tools can help design-
ers estimate the environmental impact of their current designs
and explore more benign alternatives. Serfani et al. [23] de-
scribe a multi-criteria decision-making method for material se-
lection that utilizes structural optimization. In this work, the part
shape is modeled using a set of design dimensions and therefore
shape exploration is limited to topology-invariant modification.
Russo & Rizzi [24] discuss a software framework that integrates
of structural optimization and life cycle assessment (LCA). The
discussed framework was not fully integrated and required de-
signers to guide the optimization process using multiple tools.

2.3 Open research questions
While previous work has developed software frameworks

for integrating structural optimization and sustainable design
(see Section 2.2), very little work has explored their use with
designers. We believe this is an important research gap as stud-
ies with professional designers have shown design optimization
tools are often used as a means for initiating ideation and explor-
ing the design space [25].

Previous research on designers’ exploration processes (see
Section 2.1) has provided insight into human behavior in de-
sign optimization tasks. Observations on the type of search strat-
egy used, extent of search, and influence of domain knowledge
on performance, have significant implications for the design of
computer-aided structural optimization tools for sustainable de-
sign. For example, (1) is it valuable to display failed alternatives
to the user?, amd (2) what is the effect of increasing the breadth
of the search space based on user domain knowledge?

As a first step towards addressing these questions, our
paper examines students’ design exploration patterns in a
sustainability-focused structural optimization task. In compar-
ison to previous studies on designers’ exploration processes, the
novelty of our study setup stems from two aspects.

• Reaching an optimal design required an understanding of two
domains: mechanical design and sustainable product design.
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FIGURE 1. Initial blank provided to students for the structural opti-
mization design task. Two bolts on the bolt face attach the brake pedal
to a frame, and a 5 psi load is uniformly applied to the pedal face. An
optimized design made from the initial blank is shown on the right.

Students in our study were familiar with optimization strate-
gies in mechanical design (i.e. weight reduction), but had lim-
ited experience in optimizing for environmental sustainability.

• Exploration via topology modification affords more design
freedom in comparison to varying specified design parameters
on a numerical scale [26]. This allowed students to explore
a wide variety of shapes and made it challenging for them to
identify a unique optimal solution.

We also required students to manually optimize the topol-
ogy of the component, rather than use a topology optimization
software such as Autodesk Dreamcatcher1. This made students’
decisions to retain or remove material more explicit, and made
the conflict between weight, structural stability, and sustainabil-
ity more apparent to the students.

3 METHODOLOGY
3.1 Structural optimization task

The structural optimization task was set up as a two-criteria
optimization problem with the goal of simultaneously minimiz-
ing the weight (Wt) and an environmental indicator (EI) for a
pedal bracket design. For this, students were required to syn-
thesize different pedal brake geometries beginning from a com-
mon initial design. The initial design was akin to a “cast blank”
from which students could create shapes by removing material.
As shown in Fig. 1, the brake pedal is attached to a frame (not
shown) using two bolts which holds the bolt face against that
frame. A 5 psi load is uniformly applied to the face of the brake
pedal. All contacts are assumed to be frictionless for this task.

The primary constraint for the task was that the maximum
von Mises equivalent stress in the brake pedal could not exceed
the maximum allowable stress. Students could use one of three
materials in the task; Cast Iron GGL-NiCuCr (CI), Aluminum
2036 (Al), or Carbon Steel 35S20 (CS). The three materials were

1https://autodeskresearch.com/projects/dreamcatcher
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FIGURE 2. Steps involved in a unit iteration for the structural opti-
mization task.

chosen such that the choice of material significantly affected the
Wt and the computed EI. Additionally, we limited all geome-
try operations in the task to subtraction (material removal), to
mimic real-world manufacturing through machining processes.
These constraints also helped us set Wt and EI to be conflicting
objectives and make the task challenging. We ensured that the
Wt, EI, and maximum allowable stress varied considerably with
change in material and geometry. Thus, reaching an optimal so-
lution in this task required students to develop an understanding
of the inter-relatedness among these parameters.

The three steps involved in a unit design iteration are shown
in Fig. 2. First, students modified the brake pedal design on a
CAD program. Next, they input the volume of the modified de-
sign on a Microsoft Excel® calculator that estimated the weight
of the part as well as environmental indicators for the three ma-
terial choices. The reason for providing this calculator was re-
ducing the calculation burden when performing design iterations.
Finally, students used an FEA package to verify if the modified
design passed the constraint on allowable von Mises equivalent
stress. The FEA package also displayed the stress distribution on
the CAD model which gave insights into locations for removing
additional material.

Equation 1 describes the formula used for calculating the
single score cradle-to-gate EI in the Microsoft Excel® calcula-
tor. The computed indicator accounts for impacts resulting from
material extraction, blank formation, manufacturing processing,
and material recovery. Unit impacts for these processes are based
on the Ecoinvent 99 (I) method available in SimaPro®.

EI = u1 ∗Wb +(u2 −
p

100
∗u3)∗

n

∑
i=0

MRWi (1)

Here,
Wb: weight of the initial blank
MRWi: weight of material removed in the ith step
n : total manufacturing steps
p : percentage of material recycled from total material removed
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u1, u2, u3: single score unit process impacts for material extrac-
tion, manufacturing, and material recycling respectively

Table 1 shows the values for u1 and u2 for the three materials
used in the task. For estimating unit process impacts, all material
removal operations for the part (i : 1,2, ...,n) were assumed to
be computer numerical control (CNC) milling. Furthermore, we
assumed recycling credit was equal to the impact of material ex-
traction (i.e. u3 = u1) and that all machined material was recycled
(p = 100%). We found these simplifications kept the structural
optimization problem at a reasonable level of complexity in ear-
lier studies [27]. All unit process impacts are expressed in Pt/lb.
Here, 1 Pt represents 1/1000th of the yearly environmental load
of an average European inhabitant.

TABLE 1. Single scores for process specific unit impacts calculated
using the Ecoinvent 99(I) method on SimaPro®

u1 (Pt/lb) u2 (Pt/lb)

Cast Iron (GGL-NiCuCr) 1.4043 0.15836

Aluminum (Al 2036) 1.9238 1.6108

Carbon Steel (35S20) 0.04997 1.21009

3.2 Study procedure
3.2.1 Participants: The structural optimization task

was distributed to 70 students in an undergraduate CAD and pro-
totyping course at Purdue University as a week-long take-home
assignment. This assignment was one of four assignments in the
class and contributed to 3% of the overall class grade. Students
in this course were at the junior or senior level and were enrolled
in engineering-related degree programs. Submission of the as-
signment was mandatory for class grade.

3.2.2 Pre-Assignment Instructions: Before dis-
tributing the assignment, we conducted a 30 minute lecture that
clarified the assignment objectives and constraints. We also
demonstrated the CAD program, FEA package, and the Mi-
crosoft Excel® calculator by illustrating a design iteration. Stu-
dents were informed ninety percent of the total assignment grade
was based on correctly setting up the CAD model and the FEA
problem. To motivate design exploration, the remaining ten per-
cent of the grade was based on performance relative to other stu-
dents in the class. For this, all final submissions were ranked
based on whether both EI and Wt for one submission was lesser
than another solution and placed into quartiles. Students were
awarded 100%, 75%, 50%, or 25% of the ten percent grade based
on their quartile placement. Students were also asked to perform
at least three design iterations for the assignment.

3.2.3 Pre-Assignment Guidance: Students could
discuss their questions with experts in CAD, FEA, and environ-
mental sustainability assessment during two 90-minute lab ses-
sions. The experts helped students with software problems and
conceptual understanding but did not provide any direct design
suggestions to students. Along with the assignment, students
were also provided with instruction documents, including (1) a
step-by-step presentation illustrating the sample design iteration
discussed before the assignment, and (2) a document describing
the method for computing the environmental indicator.

3.2.4 Data collection: A web-based survey was dis-
tributed prior to the structural optimization assignment. The goal
of this survey was to assess the diversity of the student popula-
tion and their prior knowledge on mechanical design, structural
optimization, and environmental sustainability. Completion of
this survey did not count towards the course grade.

Data collected from the structural optimization assignment,
included (1) a digital copy of the final CAD model, (2) a print
out illustrating the von Mises equivalent stress distribution for
the final CAD model, and (3) a table detailing the weight, envi-
ronmental indicator, chosen material, and stress analysis results
(pass/fail) for every design iteration. We did not ask students to
submit a CAD model for each design iteration as the course in-
structors felt that it would impose undue burden on the students.

3.3 Research questions and hypotheses
We framed research questions listed below based on litera-

ture reviewed in Section 2 and the objectives of this study. To
answer these research questions, we framed hypotheses and ana-
lyzed them based on data collected from our study.

RQ1: What is the effect of failed design iterations on task per-
formance?

H1a: Students with one or more failed iterations per-
formed better than students with no failed iterations

H1b: Total number of failed design iterations is positively
correlated to task performance

RQ2: What is the effect of breadth of the search on task perfor-
mance?

H2a: Students who switched to another material one or
more times performed better than students who did
not switch materials

H2b: Total number of material switches is positively cor-
related to task performance

RQ3: What is the effect of total number of iterations on task per-
formance?

H3: Students who performed more design iterations per-
formed better on the task
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RQ4: What is the relationship between the final shape and task
performance?

H4a: Designs with similar shapes had a similar level of
task performance

H4b: High performing designs converged to a unique op-
timal shape

RQ5: What is effect of experiencing parameter conflicts on task
performance?

H5a: Students who experienced one or more parameter
conflicts performed better than students who did not
experience any conflict

H5b: Total number of parameter conflicts experienced is
positively correlated to task performance

4 RESULTS
4.1 Results from the survey

We received a total of 59 responses (response rate = 84%)
for the voluntary survey distributed prior to the structural op-
timization assignment. Among them, 17 students were in the
junior year and 42 were in their senior year of their bachelor’s
program. All students reported to have taken prior courses in
either statics, mechanics of materials, or strength of materials.
A majority of students (50/59) also had prior experiences with
synthesizing structural members in real-world design projects.
Given these responses, we expected students to have developed a
working knowledge in mechanical design and stress analysis. On
the other hand, none of the 59 students had taken prior courses
related to sustainable design. Only 1/59 students reported having
prior experience with a design project involving sustainable de-
sign. Thus, we expected students’ limited understanding of sus-
tainable design to pose a significant challenge in the structural
optimization assignment.

4.2 Summary of results from the assignment
From the total class of 70 students, 3 students did not sub-

mit the assignment and 25 students committed errors in defin-
ing physical constants and constraints. The remaining 42 sub-
missions are analyzed in this paper. Table 2 details summary
statistics for students’ performance in the structural optimization
assignment. We found although students were only required to
perform 3 iterations for assignment completion, 27/42 students
performed additional iterations. Exactly half the students (21/42)
reported they had one or more failed iterations (iterations where
designs failed the stress constraint). A majority of final designs
were either Cast Iron (54.76%) or Aluminum (35.72%). We also
found 22/42 students did not switch to a different material along
the optimization process. For both final Wt and final EI we found
considerable dispersion in the results (see Figure 4). The coef-
ficient of variation for final Wt = 1.42 and for final EI = 0.769.

Figure 3 illustrates the variety in the shape of the final design
submitted by the students. The variation in final Wt, final EI,
and shape, for finals design submitted by students suggests they
adopted very different optimization strategies.

TABLE 2. Summary of results from the structural optimization as-
signment. Here, total iterations represents the number of iterations
performed irrespective of failure. Failed iterations refers to iterations
in which the designs failed to satisfy the stress constraint. The table
also illustrates the EI and Wt for the final designs submitted by the stu-
dents. Material switches counts the number of instances where students
switched to another material. Final materials refers to the percentage of
final designs of a particular material.

Sample
mean

Sample
variance

Sample
range

Total
Iterations

5.64 8.86 [1,12]

Failed
Iterations

1.33 3.69 [0,7]

Final EI
(Pt)

16.41 151.25 [4.39,48.70]

Final Wt
(lb)

1.63 3.57 [0.24,11.16]

Material
Switches

0.83 0.82 [0,3]

Final
Materials

CI = 54.76%,
Al = 35.72%,
CS = 9.52%

As the task objectives were to simultaneously minimize final
Wt and final EI, we encoded task performance by defining a de-
sign’s class rank. For each design, we calculated the number of
designs from the class that it outperformed (i.e. had a lower final
Wt and a lower final EI than the other design). The class rank
for a design, was computed by sorting all designs in the class
using this performance measure. Designs with tied performance
were given the same class rank.

4.3 Results from hypotheses testing
4.3.1 RQ1: To test the effect of failed iterations on

task performance, we computed the Spearman’s rho (rs) be-
tween number of failures and the indicators of task perfor-
mance. We found the number of iterations was significantly
correlated to class rank (rs(40) = −0.4957, p < 0.001), final
Wt (rs(40) = −0.4809, p = 0.0013), and final EI (rs(40) =
−0.3317, p = 0.0319). Results from a Wilcoxon’s rank sum
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FIGURE 3. Shape of the final designs submitted by students.
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FIGURE 4. Histogram plot for final Wt and final EI.

test also showed class rank for students with no failures was
significantly greater than students with one or more failures
(Z = 2.6194, p = 0.0044). These results indicate that the number
of failed iterations had a significantly positive correlation with
task performance.

4.3.2 RQ2: We used two criteria to determine a stu-
dent’s breadth of search: (1) the number of times they changed
materials, and (2) the difference between the students’ final Wt
& EI from their initial Wt & EI. To see if criterion (1) was
an indicator of student performance, we computed the Spear-
man’s rho (rs) between the number of material changes and
the indicators of task performance. We found that the num-
ber of material changes was not significantly correlated to class
rank (rs(40) = −0.13, p = 0.39). We observed the same ab-
sence of significant correlation between the number of material
changes and final Wt (rs(40) = −0.12, p = 0.94), and final EI
(rs(40) = −0.18, p = 0.25). A Wilcoxon’s rank sum test also
showed no significant difference between the class rank of stu-
dents with no material changes and students who changed mate-
rial at least once (Z =−0.32, p = 0.74).

For criterion (2), we computed the Spearman’s rho (rs) be-
tween Wt difference (Initial Wt −Final Wt) and class rank, and
between EI difference (Initial EI −Final EI) and class rank.
While there was no significant correlation between weight dif-

ference and class rank (rs(40) = −0.037, p = 0.82), we found
a significant correlation between EI difference and class rank
(rs(40) = −0.49, p < 0.001). This indicates that the magnitude
of reduction in EI was significantly correlated with task perfor-
mance. Additionally, the “breadth of search” with respect to ma-
terial changes or weight reduction do not significantly correlate
with task performance.

4.3.3 RQ3: The variation in students’ final Wt and final
EI against Total Iterations is shown in Figure 5. Using these
data, we computed the Spearman’s rho (rs) for Total Iterations
and final Wt (rs(40) = −0.280 , p = 0.0725) as well as Total
Iterations and final EI (rs(40) = −0.3331, p = 0.0311). These
results show final EI is negatively correlated to design iterations.
We also found a significant correlation between Total Iterations
and class rank (rs(40) =−0.4218, p = 0.0054).

Further analysis by splitting results based on the chosen fi-
nal material showed only designs with Cast Iron exhibited signif-
icant correlation between Total Iterations and class rank/final
Wt/final EI (rs(21) = −0.5727, p = 0.0043). Please note for a
single material type, class rank, final EI, and final Wt have the
same rs value as they are perfectly correlated with each other (see
Eq. 1). For Cast Iron, Total Iterations is significantly correlated
with class rank, final EI, and final Wt because of two factors
(see Figure 6). First, 3 students submitted Cast Iron designs with
high final EI and final Wt while performing significantly less
iterations than the sample mean. Second, the environmental im-
pact due to machining (u2 in Table 1) for Cast Iron is significantly
lower than for other materials.

4.3.4 RQ4: To explore relationships between the final
shapes submitted by students (see Figure 3) and performance on
the task, we clustered the shapes by defining a distance mea-
sure based on the Euclidean-distance (D2) shape histogram [28].
For each shape, we first normalized the overall shape to account
for scale differences. Next, we computed the Euclidean distance
between all pairs of non-identical vertices in a shape. These dis-
tances were binned to create a D2 shape histogram. We found a
bin size of 100 gave us sufficient discriminating power between
the shapes. The distance between any two shapes is given by the
distance between their respective D2 shape histograms. In our
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FIGURE 6. Material distribution (top) over iterations, and number of
material changes (bottom) over iterations. The bottom plot also shows
the number of students who did not change material for any iteration.

case, the distance between D2 shape histograms was computed
using the Euclidean norm.

Using the above approach, we generated a 42×42 distance
matrix that represents the distance between every shape to the
other 41 shapes in in the dataset. We clustered this distance ma-
trix using the affinity propagation algorithm [29] into 7 shape
clusters. We found similarities in the shape of the final design
did not correspond to similarities in the chosen material (see Fig-
ure 7(a)). A Pearson’s chi-squared test of independence did not
yield a significant correlation between shape clusters and mate-
rial types (χ2(12) = 15.1255, p = 0.2278). This suggests, stu-

ba

ba
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Total Iter Matl 
a 11 CI 
b 10 AL 

Total Iter Matl 
a 9 AL 
b 3 CI 

Total Iter Matl 
a 6 CS 
b 4 CI 
c 3 AL 

(a) Differences in total iterations, material, Wt, and EI for shapes belonging to
the same cluster. Similarity in shape did not correspond to similarity in material
or Total Iterations.
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(b) FEA results and maximum Von Mises equivalent stress (Smax) for five designs
ranked in the top ten performing designs.The maximum stress in these designs
was close to the maximum allowable stress. However, results also show potential
for further optimization based on the presence of regions with low stress.

FIGURE 7. Influence of the final shape on performance in the struc-
tural optimization assignment.

dents’ final shapes did not correlate with material type. Anal-
ysis of FEA results also showed that the best performing de-
signs (sorted by class rank) did not converge to a unique optimal
shape for this problem setup (see Figure 7(b)). We conducted
a Kruskal-Wallis one-way ANOVA test to compare the effect
of final shape on class rank and total iterations for the 7 shape
clusters. Results showed no significant difference in class rank
(χ2(6) = 11.17, p = 0.0832) and total iterations (χ2(6) = 4.49,
p = 0.6104) between the 7 shape clusters.

4.3.5 RQ5: We identified the number of times students
experienced opposing changes in Wt and EI, i.e. an increase
in Wt from the previous iteration accompanied by a reduction
in EI, or vice versa. Using this as a measure of conflicts, we
computed Spearman’s rho (rs) between this measure and stu-
dent performance (final Wt and final EI). We found no signifi-
cant correlation between the number of conflicts and the final Wt
(rs(40) = 0.075, p = 0.64), or between the number of conflicts
and the final EI (rs(40) =−0.18, p = 0.26). A Wilcoxon’s rank
sum test also showed no significant difference between the class
rank of students with no conflicts and students who experienced
conflicts at least once (Z =−0.98, p = 0.33).
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TABLE 3. Summary of results from hypothesis testing.

Results Explanation

H1a Accepted Students with one or more failed iterations performed significantly better than students with no failed iterations.

H1b Accepted Total number of failed iterations was positively correlated to performance on the task.

H2a Rejected
No significant difference was found between the performance of students who changed material at least once over
their iterations and that of students who did not.

H2b
Partly
Accepted

No significant correlation was found between the number of material changes and student performance, or between
weight difference and the task performance. However, the magnitude of difference between the final and initial EI
was negatively correlated to task performance .

H3 Accepted Total number of iterations was positively correlated to task performance.

H4a Rejected Final shape did not have a significant correlation to task performance.

H4b Rejected Top performing designs did not converge to a unique shape or belong to a any single shape cluster.

H5a Rejected
No significant difference was found between the performance of students who experienced one or more parameter
conflicts and students who did not.

H5b Rejected
No significant correlation was found between the number of conflicting results between iterations (i.e, Wt and EI
changed in opposite directions) and task performance.

5 DISCUSSION
Results from the survey showed students had some previ-

ous experience in structural synthesis and a lack of awareness of
ES-related concepts. Table 3 summarizes results from the hy-
pothesis tests. We found total number of design iterations was
positively correlated to task performance (H3a). Results also
showed that students did not converge to a single optimal de-
sign and there was significant potential for further optimization
in submitted designs (H4a & H4b). These results mirror Austin
et al.’s [2] findings that students searched global spaces poorly.
Given these findings and the fact that searching large problem
spaces with coupling effects is a challenge especially for novice
designers [4], there is a need for facilitating exploration of the
global design space, for example through the use of computer-
aided tools in sustainable design.

We found students with one or more failed iterations per-
formed better than students with no failed iterations and total
number of failed iterations had a significant positive correlation
with task performance (H1a & H1b). Coupled with the finding
by Ahmed et al. [6] that expert designers are better at questioning
the future potential of a chosen approach, these results suggest
there may be value in displaying the failure case for a particular
exploration direction adopted by novice designers. By providing
feedback about when the design reached a limiting constraint,
computer-aided tools can help novice designers (1) realize the
need for exploring an alternate direction or backtrack, and (2)
develop insights about parameter couplings in their designs.

We found the breadth of exploration in materials did not sig-
nificantly affect overall task performance (H2a & H2b). This
could partly be because of how students’ strategies in choosing

material (see Fig. 6). Results show most students discarded Car-
bon Steel possibly due to its lack of advantage in weight or EI
score. Of the remaining students, some chose Aluminum ( in
spite of its material extraction impact) and worked to generate
a shape optimal for weight and manufacturing impact. Others
chose Cast Iron potentially due to its low EI score, and sought
to offset the weight by iterating over the shape. This is equiva-
lent to findings by Ball et al. [7], that designers tend to narrow a
breadth-first search to a domain that they are more knowledge-
able in. Here, the impact of material choice on EI was not a
domain students were well-versed in, and hence their material
choices were fixed earlier, after which they focused on a domain
they were well-versed in, i.e. changing the shape of a structure
to optimize performance. To bridge the gap , design tools could
allow multidimensional exploration of design parameters. Au-
todesk Dreamcatcher, which provides a range of solutions based
on defined constraints and goals, and ShapeSIFT [30], which
suggests design options based on prior designs, are examples of
such tools that explicate expert-level knowledge and heuristics.

Finally, we found experiencing “conflicts” in design
problems—instances when Wt and EI changed in opposite di-
rections (due to a change in material or geometry)—did not sig-
nificantly correlate with student performance. According to Yu
et al. [3], designers with greater domain knowledge were able
to understand the coupling effects of design parameters better.
Therefore, our finding could partly be due to students’ overall
lack of experience in simultaneously exploring coupled design
parameters such as material and geometry in the context of sus-
tainable design. However, limiting material choice in the task
could have also contributed to this finding as fixing material re-

8 Copyright © 2018 by ASME



stricts the possibility of experiencing such conflicts. Most stu-
dents made a material choice early, and the proportion of students
changing material reduced over iterations, reducing the potential
for conflicting outcomes. With these two combined factors, it
would be difficult to generalize this observation and extend them
to other multi-objective optimization problems. However, study-
ing how students manage coupling effects is still a rich area of
research, and future iterations of our study will place greater em-
phasis on this aspect of design behavior.

6 LIMITATIONS
Our study was limited to junior and senior level engineer-

ing students in a classroom setting. The task was distributed as
a take-home assignment over a one-week period. We did not re-
strict students from accessing external material and the time for
task completion to make it reflective of realistic structural opti-
mization tasks. However, we could not closely monitor students’
behavior during the study. The software workflow in our study
was more tedious compared to previous studies on parameter-
based design exploration. For each iteration, students modified
their design on a CAD program and analyzed results using a
spreadsheet-based calculator and an FEA package. This may
have limited the number of design iterations performed by each
student. While using topology optimization and generative deign
tools could have eased some of this tedium, they would have pre-
vented us from understanding what changes were initiated by stu-
dents as opposed to the used computational tools. The grading
rubric could have influenced the number of exploration steps per-
formed. While we found that in general students performed more
than the recommended 3 iterations, we were unable to ascertain
why students stopped their exploration.

7 CONCLUSION AND FUTURE WORK
Our paper examines student’s design exploration strategies

in a sustainability-focused structural optimization task. The task
was given as a week-long, take-home assignment to undergradu-
ate students in a computer-aided design class. We found that the
total number of design iterations and the total number of failed
design iterations were positively correlated to task performance.
We also found that the final shape, number of material changes,
and experiencing a conflict in the objectives had no significant
relation to task performance. Additionally, among the two ob-
jectives, task performance was significantly correlated only to
the magnitude reduction in the environmental indicator.

Our findings point to the need for future research on
computer-aided design tools in sustainable product design that
can explicate relationships between various coupled parameters,
and help novices to better explore alternatives in the design
space. Findings from our study call for a more controlled study
to further examine students’ cognitive processes in such tasks.
In our future work, we plan on expanding our work by studying

novice as well as experienced designers. We also plan on study-
ing designers’ exploration processes with and without the use of
commercially available topology optimization software. Finally,
we will also explore the impact of increasing the material and
manufacturing chocies in the exploration process.
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