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ABSTRACT
Current text visualization techniques typically provide overviews
of document content and structure using intrinsic properties such
as term frequencies, co-occurrences, and sentence structures. Such
visualizations lack conceptual overviews incorporating domain-
relevant knowledge, needed when examining documents such as
research articles or technical reports. To address this shortcom-
ing, we present ConceptScope, a technique that utilizes a domain
ontology to represent the conceptual relationships in a document
in the form of a Bubble Treemap visualization. Multiple coordi-
nated views of document structure and concept hierarchy with text
overviews further aid document analysis. ConceptScope facilitates
exploration and comparison of single and multiple documents re-
spectively. We demonstrate ConceptScope by visualizing research
articles and transcripts of technical presentations in computer sci-
ence. In a comparative study with DocuBurst, a popular document
visualization tool, ConceptScope was found to be more informative
in exploring and comparing domain-specific documents, but less
so when it came to documents that spanned multiple disciplines.
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• Human-centered computing→ Information visualization.
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1 INTRODUCTION
Text visualization techniques have evolved as a response to the vir-
tual explosion of text data available online in the last few decades.
Specifically, they aim to provide a visual overview—what digital
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humanities now call “distant reading” [31]—of large documents
or large collections of documents, and help the researcher, inves-
tigator, or analyst find text patterns within and between docu-
ments (e.g. [41]). Most of these visualization techniques are domain-
independent and do not provide a knowledge-based overview
of documents. There have been approaches to provide a visual
overview of the semantic content of documents (e.g. [8]). Such
approaches have typically looked to lexical hypernymy (is-a rela-
tionships) to provide a conceptual overview of the text.

However, when examining domain-specific documents such as
research papers, medical reports, or legal documents, it is necessary
to examine the documents from the point of view of that specific
domain. For instance, when examining a research paper in com-
puter science, a computer science researcher may be interested in
whether the paper concerns a general overview of a subject, such
as “computer graphics”, or concerns more specific concepts such as
“infographics” or “TreeMap visualizations”. Similarly, the researcher
may want to compare papers that appear in the same conference
session to see the similarities and differences that may exist be-
tween the papers. In such scenarios, the overview visualizations
should also represent the computer science domain and how the
knowledge is structured in the domain.

While approaches such as topic modeling can provide a bottom-
up categorization or thematic separation of a document’s text, do-
main knowledge is often organized formally by experts in the cor-
responding domains using Ontologies. An ontology, defined as an
“explicit specification of a conceptualization” [19, p. 199], is a widely-
accepted way in which domain knowledge is formally represented.
A knowledge-based overview of a document that uses as a reference
the corresponding domain ontology can thus provide a conceptual
overview for the domain expert. Such a view can also be used struc-
turally to help the expert compare two or more documents based
on the concepts they cover.

In order to aid document examination from the viewpoint of
a specific domain, we present ConceptScope, a text visualization
technique that provides a domain-specific overview by referring
to a relevant ontology to infer the conceptual structure of the doc-
ument(s) being examined. ConceptScope uses a Bubble Treemap
view [17] to represent concept hierarchies, highlighting concepts
from the ontology that exist within the document and their relation-
ships with other concepts in the document, as well as key “parent”
concepts in the Ontology. Each concept “bubble” is also populated
with a word cloud that represents text from the document that
relates to the concept, providing a contextual overview. Through a
set of multiple coordinated views of text, structural overviews, and
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keyword-in-context (KWIC) views, ConceptScope helps users navi-
gate a document from a specific domain perspective. ConceptScope
can also be used to visually and conceptually compare multiple
documents using the same domain ontology as a reference. To aid
a domain novice, we also provide the user with navigable tooltips
that provide concept explanations that link to external references.

We illustrate the utility of ConceptScope by building a prototype
application1 that visualizes computer science-related documents
such as research abstracts and articles using the Computer Sci-
ence Ontology (CSO) as its reference. Through a set of use-case
scenarios, we highlight the navigation, exploration, and compari-
son functions afforded by the technique, and discuss its extension
to other domains and scenarios. We also present a brief compar-
ison of ConceptScope with DocuBurst [8] through a qualitative,
between-subjects study. Based on our observations, we find that
ConceptScope’s ontology-based visualization and its grouping of
concept-related word clouds in the Bubble Treemap helps partic-
ipants define and contextualize concepts, and explore new con-
cepts related to a given concept. However, ConceptScope’s domain-
dependency makes it less suitable for viewing and comparing doc-
uments that span domains.

2 RELATEDWORK
This paper proposes an interactive knowledge-based overview rep-
resentation of text content. For our approach, we draw from existing
techniques to identify themes or topics in the text, and visual rep-
resentations of these topics. In this section, we outline existing
work in this area and explain our reasoning behind our choice of
inspiration from the existing work.

2.1 Thematic Visualizations of Document
Content

Initial approaches to providing overview visualizations of document
content used metrics such as sentence length, Simpson’s Index, and
Hapax Legomena as “literature fingerprints” to characterize docu-
ments [26]. This approach was later used to create a visual analysis
tool called VisRA [34] that helped writers review and edit their
work for better readability using these representations. Among less
abstract representations, Wordle [45] is the most popular. Wordle
represents a text corpus as a cluster of words called a word cloud,
with each word scaled according to its frequency of occurrence in
the text. This idea is adapted to other techniques to characterize
document content and structures within text, such as the Word
Tree [48], which aggregated similar phrases in sentences in a text,
Phrase Nets [44] that visualized text as a graph of concepts linked
by relationships of the same type found in the text, and Parallel
Tag Clouds [9], that show tag clouds on parallel axes to compare
multiple documents.

When examining multiple text documents, it is important to
identify the various types of connections between them. One of the
most well-known tools used to identify inter-document connections
is Jigsaw [41], which uses names, locations, and dates to show list,
calendar, and thumbnail views of multiple documents. While Jigsaw
simply uses text occurrences to form the connections, more sophis-
ticated approaches have since been proposed. Tiara [49]—another

1The source code of our prototype system is available at https://github.com/
Xiaoyu1993/ConceptScope/

system designed for intelligence analysis—uses topic modeling with
a temporal component to highlight the change in document themes
over time. ThemeDelta [15] allows thematic comparison between
multiple documents (or similar documents over time) by combining
word clouds with parallel axis visualizations.

More recently, topic modeling-based approaches have been incor-
porated to provide thematic overviews of text content. For instance,
TopicNets [18] uses a graph-based representation where both doc-
uments and topics are nodes and links exist between documents
and topics, thus serving to form clusters of thematically-related
documents. Serendip [2] refines this idea and provides a multi-scale
view of text corpora. It uses topic modeling along with document
metadata to view patterns at the corpus level, text level, and word
level. Oelke et al. [35] use a topic model-based approach to compare
document collections, using what they call a “DiTop-View” with
topic glyphs arranged on a 2D space to represent the document
distribution. ConToVi [12] is a more recent work that uses topic
modeling on multi-party conversations to reveal speech patterns
of individual speakers and trends in conversations. While topic
model-based approaches are useful for identifying themes within
collections of documents, a knowledge-based approach requires
the use of human-organized representations of information, which
are discussed in the following section.

2.2 Knowledge-Based Visualizations
As structured knowledge representation models [16], ontologies
are widely used in the field of medicine/biology [16], engineer-
ing [36, 51], sociology [22], computer science [42], and so on. Achich
et al. [1] review different application domains and generic visual-
ization pipelines of ontology visualization.

According to various application fields and utilizing purpose,
there are multiple methods to visualize the knowledge stored in
an ontology. The review of Katifori and Akrivi [25] systematically
categorized these methods according to the dimension of the vi-
sualization. Ten years later, Dudáš et al. [11] further extended this
work by adding more recently emerged visualizations. Among these
visual encodings, we find inspiration in the matrix view of Node-
Trix [22], the sunburst view of PhenoBlocks [16], and the context
view of NEREx [13].

Our work is inspired by DocuBurst [8], which was the first
visualization from the point of view of a human-organized structure
of knowledge. DocuBurst uses hyponymy, or “is-A” relationship in
the English lexicon to identify hierarchical relationships within a
given document, or when comparing two documents. The hierarchy
is visualized as a sunburst diagram supported by coordinated views
of text content and keyword-in-context views. While DocuBurst
uses WordNet—a lexical database of the English language—as its
reference, we use domain ontologies as ours, in order to provide a
more focused, domain-specific overview of documents.

2.3 Hierarchical Layouts
Visualization of a knowledge-based document overview needs to
incorporate the hierarchical information inherent to the knowledge
base. While a tree is the common representation of such a hierarchy,
it is usually more suitable for showing the structure rather than the
content of the information presented. The most famous alternative
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for representing hierarchical information is the TreeMap [38], a two-
dimensional, space-filling layout that represents hierarchy through
nesting and a second quantity such as percentage contribution to
the whole as the area. Alternatives to TreeMaps such as Icicle plots
and Radial TreeMaps [4] and Sunburst diagrams [40] have since
been proposed and incorporated into standard visualizations of
hierarchies. DocuBurst [8] referenced in the previous section uses
the Sunburst diagram as its hierarchical visualization.

While the original TreeMap has afforded enough space in the rep-
resentation to portray content, it often comes at the cost of some loss
of detail in the hierarchy. Alternatives such as circle packing [47]
and more recently, Bubble Treemaps [17] have been proposed to
address this issue. We incorporate the Bubble Treemap into our
design for its relative compactness compared to circle packing, and
its use of space that allows for some content representation.

3 REQUIREMENTS AND DESIGN
In this section, we break down our overall need to provide a
knowledge-based overview of document content into specific re-
quirements to inform the design of ConceptScope. We apply Collins
et al.’s [9] question “What is this document about?” to the general
“distant reading” tasks for both single text analysis and parallel
text analysis posed in Jänicke et al. [24], typically addressed using
intrinsic text properties such as entity/location occurrences, text fre-
quencies, etc., but not domain knowledge. Our requirements stem
from exploring tasks of hierarchical overview, document compari-
son, and concept exploration using a knowledge base as reference.

R1 Provide Conceptual Overview: When reading a long
document from an unfamiliar domain—such as an academic
paper—the reader can benefit from a high-level overview of
the information provided. While word clouds can provide a
simple overview of the text in the document, a lack of un-
derstanding of the technical terms might hinder the reader
in understanding the overview representation. Instead, an
overview that stems from a fundamental categorization of
the domain itself—as represented by the hierarchical orga-
nization of concepts often available in an ontology—can
provide an overview that is accessible to both novices and
experts in the domain.

R2 Reveal Contextual Information: The document text
and the ontology do not always overlap. From the point
of view of the ontology, the document contains non-relevant
information, but information nevertheless important for
the reader. For instance, a research paper introducing a
new search algorithm can introduce several concepts in the
knowledge base of search algorithms. The paper would also
make arguments for and against certain algorithms. The
reader may benefit considerably from the structure and con-
tent of these arguments, which are lost if the overview vi-
sualization focuses solely on the ontological components.
A way to provide the contextual information surrounding
these concepts is thus needed.

R3 Support Exploration ofNewKnowledge:When explor-
ing a concept that is a sub-domain of a domain that is only
partially known to the reader, they may be interested in

other sub-domains of the domain. For example, if the term
“quicksort” appears in an algorithm paper, the reader might
want to know of other sorting algorithms such as “bubble
sort” and “merge sort”. They may also want to learn about
related terms such as “divide and conquer” and “time com-
plexity”. These new terms may not appear in the document
text, but forms an essential component of knowledge that
extends from—and aids the understanding of—the core con-
cept (i.e. quicksort). We thus need ways to enable users to
access information from the ontology that is related to the
concept of interest.

R4 Support Multi-document Comparison: Document
comparison is a common requirement that emerges from the
creation of visual overviews of documents [8]. In the case of
our scenario, the comparison is likely to be conceptual: to get
a quick comparison of concepts that are common to multiple
documents, and those that are unique to one. The reader
may also want to simply compare the differences between
the information provided in two documents. While docu-
ments such as academic papers may contain an abstract that
summarizes the main content of the article, it may not be
sufficient enough to cover all the concepts that are covered
in the papers, not to mention the similarities and differences.
Therefore, our tool should be able to provide visual support
for users to compare and analyze the conceptual structure
and content between two or more documents.

4 IMPLEMENTATION
In order to provide the knowledge-based conceptual overviews of
a given document, an appropriate mechanism is needed to parse
the document and compose queries to the reference ontology. An
appropriate representation of the concept needs to be automati-
cally generated in a way that reflects its hierarchy in the domain
ontology as well as its occurrence in the document. To achieve this,
we need to incorporate techniques from multiple areas including
natural language processing, ontology querying, and information
visualization. Figure 1 shows the framework of assembling them
into a pipeline and the section number describing the corresponding
technical details.

4.1 Generating Query Candidates
Ontology queries are typically performed using SPARQL (SPARQL
Protocol And RDF Query Language) [46], which typically use
“triples” (subject, predicate, and object) or parts thereof. In our case,
trials showed that an exact triple was unlikely to be constructed
from the document, nor was it deemed necessary. Instead, it was
more important to have the subjects or objects be specific terms
that are likely to be present in the ontology. We construct these
queries from the document with a sentence-level granularity. In
order to construct the query terms, we use two approaches: noun
chunking, and n-gram identification.

Noun chunking is the process of extracting subsets of noun
phrases such that they do not contain other noun phrases within
them [6]. This allows us to identify specific terms that may be rel-
evant to a domain ontology. For instance, when referencing the
computer science ontology, terms such as “object-oriented program-
ming” and “local area network” are much more meaningful than
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Figure 1: Data processing pipeline for ConceptScope.

the individual words that make up these terms (“local”, “object”,
or “area”). For this reason, we also do not resort to stemming or
lemmatization as they change the morphology of the word (e.g.,
“oriented”, if lemmatized to “orient”, forms “object-orient program-
ming”) which renders the noun chunk invalid as a query candidate.
Noun chunks can also include leading or trailing stop words, which
are trimmed in order to generate the query candidates.

Noun chunking can produce phrases that contain query candi-
dates but are not query candidates themselves. For instance, a paper
about animation may include multiple variances of animation like
“2D computer animation”, “stop-motion animation” and “animated
transition”. Some of these may appear within noun chunks, but not
by themselves. To identify such cases, we identify groups of words
that commonly occur together in the document as n-grams.

4.2 Mapping Queries to Concepts
Once the query candidates are identified, the next step is to map
these candidates to the corresponding concepts in the domain on-
tology of interest. This involves two steps: (1) perform identical
matches, i.e. concepts that correspond exactly to those in the on-
tology, and (2) reduce the number of “failed” matches, i.e. concepts
that are related but not present in the ontology. Step 2 is often
necessary as domain ontologies are not all uniformly mature. For
instance, Computer Science Ontology is not as well-populated as,
say, medical or biological ontologies such as the human phenotype
ontology.

The two steps—accurate matching and fuzzy matching—are illus-
trated in lines 8 through 15 in Algorithm 1. For any given candidate,
we first look for an accurate match in the domain-specific ontology.
We then construct a dictionary that includes all of the concepts
in the ontology for an effective search. However, the number of
concepts that can be directly detected by accurate matching is small.
This is because of the mismatch between specific forms in which
a concept is listed in the ontology and its many variations in the
document. For instance, “object-oriented programming” may be
the exact match in the ontology, but it might appear in the text as
“object-oriented approach” which is clearly related but cannot be

identified with an accurate match. In order to solve this problem,
we introduce a fuzzy match.

Algorithm 1 Detect CSO Concepts in Document

Input: document text strinдDoc
Output: concept dictionary dictConcept
1: listSent ← Split (strinдDoc)
2: modelNGram ← TrainNGram (listSent)
3: dictConcept ← ∅
4: for strinдSent in listSent : // iterate over each sentence of the

document
5: listNGram ← modelNGram (strinдSent) // identify initial

query terms
6: listChunk ← NounChunkinд (strinдSent) // identify addi-

tional query terms
7: listCand ← listChunk ∪ listNGram
8: for strinдCand in listCand : // iterate over each candidate

query term
9: if QueryCSO (strinдCand) , ∅: // accurate matching
10: dictConcept ← dictConcept ∪QueryCSO (strinдCand)
11: else: // fuzzy matching
12: f uzzyCand ← DBpediaSpotliдht (strinдCand) // get

candidate DBpedia concepts
13: f uzzyCand ← Filter (f uzzyCand, threshold) // filter

candidate DBpedia concepts according to similarity
14: if QueryCSO (f uzzyCand) , ∅: // link the filtered

DBpedia concepts back to CSO concepts
15: dictConcept ← dictConcept∪QueryCSO (f uzzyCand)

The goal of fuzzy matching is to match the candidate to a concept
that is very close to but not exactly equal to the candidate. In our
prototype system, we use the computer science ontology (CSO)
as the domain-specific ontology. The CSO also incorporates links
of the form “sameAs” (http://www.w3.org/2002/07/owl#sameAs),
that connect to DBPedia [29], a broader, but less strictly-defined
and less domain-specific ontology. We use these links and leverage
the DBpedia Lookup Service [21] to find related DBpedia concepts

http://www.w3.org/2002/07/owl#sameAs


ConceptScope CHI ’21, May 8–13, 2021, Yokohama, Japan

and link them back to CSO. After checking the semantic similarity
between the CSO concept detected in this way and the original
candidate query term using the Wu-Palmer similarity measure
offered as a default function in WordNet [14], we add the concept to
the dictionary if that similarity is above a threshold. This threshold
is currently determined by trial and error.

4.3 Hierarchy Reconstruction
The concept dictionary constructed thus far does not yet incor-
porate hierarchical information. In order to retrieve and store the
hierarchical information from the ontology, we query the paths
from every detected concept to the root of the ontology and use
them to restructure the concept dictionary as a tree. The final out-
put of this algorithm—the concept tree—can be directly converted
to a JSON file and used to automatically render the visualization.

5 CONCEPTSCOPE INTERFACE
In this section, we discuss the visualization design and the interac-
tions supported in ConceptScope.

5.1 Visual Encoding
We choose Bubble Treemaps proposed by Görtler et al. [17] as our
primary visualization. This visualization is originally designed for
uncertainty visualization, but we find it suitable for our application
in terms of hierarchy representation and space organization (R1).
We use the original layout algorithm of the Bubble Treemap, but
adapt the visual encoding and interaction strategies to meet our
design requirements.
5.1.1 Hierarchy Presentation. In a Bubble Treemap, the deepest
levels of the hierarchy are represented as circles, with successively
higher levels forming contours around their “child” levels. We use
the circles to represent the terms that appear (or have correspond-
ing synonyms) in the original document as well as in the ontology.
The outer contours represent concepts that do not explicitly appear
in the document but still represent parent concepts from the ontol-
ogy. These parent concepts are identified using the ontology query
process demonstrated in Algorithm 1. The outermost contour forms
the “root” of the ontology, with successive inner contours repre-
senting its child concepts. For example, in the computer science
ontology (CSO) [37] we use for our case studies, the term “computer
science” is the root concept in the ontology.

Inner Circles. The function of the innermost circles—representing
concepts that are present in the ontology and in the document—
is to provide a clear representation of the terms that are directly
connected to the document. The size of the circles is proportional
to the frequency with which the corresponding term appears in
the document. The fill color of a given circle corresponds to the
highest “parent concept” it belongs to, just below the root. Although
the Bubble Treemap layout already gathers together circles that
share the same parents, we visually reinforce such relationships
by assigning the same color to circles with the highest common
ancestor (besides the root). These “highest parent concepts”, divide
the root term into several subclasses and help users to better grasp
the various areas the document covers. In order to make sure the
circles’ colors are perceptually uniform, we create the isoluminant
palette [27] from the CIELAB color space to ensure perceptual
uniformity between the concepts shown.

Surrounding Contours. The contours surrounding the circles
show hierarchical relationships between the concepts that occur
in the document. After exploring several encoding options for the
contours to best represent related concepts while highlighting hier-
archies, we chose fill colors of decreasing luminance to represent
“deeper” contours in the hierarchy.

5.1.2 List Presentation. Effective as the Bubble Treemap is, it is not
intuitive enough for the users to understand and grasp all necessary
information at a glance (R1). Therefore, we augment the visual-
ization with a multi-function widget (Fig. 2 (e)) which combines
concept list, legend, and bar charts representing term frequencies
to solve this problem. Inspired by scented widgets [50], the multi-
function widget presents important supporting information in a
compact representation. As a concept list, this tool represents every
concept detected in the currently-loaded document(s) as a list item,
the background color of which is the same as the corresponding
concept circle(s) shown in the Bubble Treemap. We group the con-
cepts sharing the “highest super topic” together, with an additional
list item showing the common “highest super topic” of each group.
This concept list also acts as a legend showing the connection be-
tween each color and their corresponding “highest super topic”.
We also attach a sparkline for each list item to show the distribu-
tion of current concept across multiple documents (when multiple
documents are loaded).

5.1.3 Incorporating Word Clouds. An unlabeled Bubble Treemap
can be too abstract a representation for the user to comprehend.
On the other hand, labeling every concept may result in a cluttered
view which would also make comprehension difficult. We thus
provide three levels of labeling for the concept: unlabeled (if the
concept circle is too small), labeled (if the concept circle is large
enough to fit its corresponding concept name), and labeled with
context (where a word cloud of related terms from the document is
combined with the concept label) (R2). The interactions to control
these views are discussed in the following section.

5.2 Interaction
ConceptScope provides linking between views and semantic
overview and detail views to help analyze the document(s) and
its concepts. These interactions support two modes of document
analysis: exploration and comparison. We will first describe the
overview and detail interactions and follow them with the modes
of analysis.

5.2.1 Overview+Detail Interactions. To eliminate the potential con-
fusion caused by the users’ unfamiliarity with the Bubble Treemap,
we introduce interactions to acquaint them with the visual schema
and provide details on demand [39]. The Bubble Treemap provides
a compact view of the domain-relevant concepts, their hierarchical
structure in the ontology, as well as their context in the original
document. In order to make this compact representation easier to
understand, we design two interactions to present information that
the user may seek: (1) a level slicer to “slice” the Bubble Treemap
at any level to examine parent concepts, and (2) semantic zooming,
which allows the user to zoom in to a concept circle to examine its
corresponding word cloud (described in Sec. 5.1.3). The users can
choose and combine these two tools according to their preference.
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Figure 2: TheConceptScope interface representing two research papers discussing animation. TheBubble Treemaps (a) provide
overviews, with the one on right showing a paper covering more specific topics than the one on the left. Supporting transcript
(b) and text (c) views, along with a level slicer (d) and a list presentation (e) allow exploration and comparison between the
documents, while a tooltip (f) allows examination of a concept of interest.

The Level Slicer is designed to help novice users quickly build
a connection between the nested layout of the Bubble Treemap and
the hierarchical structure of ontology (R2, R3). This tool allows the
user to choose the level of the parent concept that they want to see
on the screen by sliding the slider bar. When the view initializes, all
levels of the Bubble Treemap are shown to provide an overview, but
the labels corresponding to parent contours are concealed. Once
the “child” concepts are sliced away by the slicer, the corresponding
labels of the newly exposed parent concepts are made visible. This
tool facilitates users to inspect any cross section from the whole
hierarchical structure that interests them.

Semantic Zooming is designed to provide different granulari-
ties of information based on users’ needs (R2, R3). As explained in
Sec. 5.1.3, users may see three levels of detail for the same concept
circle: unlabeled, labeled, and labeled with word cloud. When users
zoom in and out of the graph, the size of every circle changes and
its appearance transforms among the three based on the available
space inside it.

ConceptScope also reveals more information about a concept
including its thumbnail, definition, related concepts, and its context
in the text. These views allow the exploration of concepts that do
not themselves occur in the document but are related to the ones
that do occur (R3).

5.2.2 Exploration Mode. The exploration mode—meant for inspect-
ing a single document—provides conceptual overview+detail rep-
resentations of the document using the ontology as a reference.
With the static Bubble Treemap, it is almost impossible for novice
users to build the connection between a circle in the graph and a
word/phrase in the original text. Usersmight want to explore related
knowledge in the domain ontology about the concepts shown in the

Bubble Treemap. Following the information-seeking mantra [39],
we design a set of small widgets that can be easily evoked and
interacted with to the Bubble Treemap.

To connect the Bubble Treemap and the original document (R2),
we create a high-level transcript view and a raw text view. The high-
level transcript view can be seen as a “minimap” of the document,
with each sentence represented by a series of horizontal lines scaled
to sentence lengths (Fig. 2 (b)). In the raw text view, the raw text
is shown to provide a convenient context acquisition (Fig. 2 (c)).
These two views as well as the Bubble Treemap view are fully
coordinated, so that interacting with one view highlights related
information in the other views. For example, if the users hover over
a circle representing a concept in the Bubble Treemap view, the
lines corresponding to the sentences that contain this concept in
the transcript view and the text of the sentence in the raw text view
are also be highlighted.

Interacting with a concept circle also reveals a tooltip that shows
the concept definition, a link to the relevant concept page on DBPe-
dia (R3)(Fig. 2(f)), and a thumbnail (if available in the corresponding
DBPedia entry). The tooltip also provides links to other related con-
cepts that may not be present in the document, to provide context
from an ontology point of view.

5.2.3 Comparative Mode. The comparative mode assists users in
comparing multiple documents and explore conceptual similarities
and differences between the documents (R4). As the name suggests,
loading multiple documents creates multiple, side-by-side Bubble
Treemap views, one for each document. Concepts common to two
or more documents are encoded in the same color across the Bubble
Treemaps.
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The comparative mode provides similar interactions as the ex-
ploration mode. In addition, the sparklines mentioned in Sec. 5.1.2
can provide users with a quick overview of the relative frequency
with which each concept occurs across the documents. The users
can compare the concepts that interest them by hovering or search-
ing. If they know where a concept is located in any of the Bubble
Treemaps, the user can simply hover on the corresponding circle or
contour, which highlights the concept—if available—across all the
Bubble Treemaps. They can also directly search for the concept in
the search field (top right corner in Fig. 2) to highlight all relevant
circles and contours across the Bubble Treemaps. The users can
thus quickly get an idea about where and how their concepts of
interest are distributed across different documents.

The switchover between exploration mode and comparative
mode does not require explicit user operation. Loading a single doc-
ument shows the exploration mode while loading additional doc-
uments sets ConceptScope to comparison mode. The exploratory
features are always available regardless of the number of docu-
ments, as comparison also requires a degree of exploration. We also
provide a “switch” alongside the level slicer in Fig. 2(d) for semantic
zooming to make sure the users can explore or compare the Bubble
Treemap(s) at whatever number of levels and size they want.

6 USE-CASE SCENARIOS
We briefly illustrate the use of ConceptScope for exploring and
comparing documents with two use-case scenarios: exploring an
academic paper and comparing the transcripts of three TED talks.

6.1 Exploring an Academic Paper
We first use ConceptScope to visualize an academic paper [10] on
automatic infographics generation, published in IEEE VIS 2019. To
ensure the accuracy of our natural language processing components,
we only keep the natural-language parts of the original paper and
remove text in references, tables, formulae, and figure labels. We
use the computer science ontology (CSO) as the reference ontology
for this paper. Fig. 3 shows the visualization, with the same paper
shown in DocuBurst [8] for reference.

The Bubble Treemap shows over 30 computer science concepts
directly or indirectly mentioned in the paper (requirement R1).
Inspecting the concept list on the left, we see that the highest par-
ent concepts of the ones identified in the document range from
“human-computer interaction” to “artificial intelligence” to “com-
puter system”. Zooming in, we click on the bubble representing
“OCR” and a tooltip pops up with the definition of this concept as
well as the recommendation of concepts related to this one (R3).
We examine the definitions and where the concept appears in the
word cloud to see that it points to the use of OCR to identify key
text in existing infographics (R2). We also see that these and most
concepts under “artificial intelligence” appear under the related
work section. We thus infer that these concepts might only be men-
tioned as background or references to other work, and not as a
fundamental contribution of the paper.

Figure 3 (right) shows the DocuBurst visualization using the
root “message”. We notice that almost all computer-science-related
concepts identified by DocuBurst can be detected by ConceptScope
as well. In terms of space efficiency, DocuBurst has the advantage of
providing a more compact visualization with its Sunburst diagram.

However, DocuBurst offers fewer options for contextual views. In
ConceptScope, the word clouds in each concept circle provide a
contextual overview and aid concept exploration outside the realm
of the document with our detail-info tooltip of concepts and the
links to DBPedia.

6.2 Comparing Transcripts of TED Talks
To illustrate multi-document comparison, we load the transcripts
of three TED Talks [7, 23, 30], all of which are tagged under the
“computers” category on the TED webpage. Fig. 4 shows the distri-
bution and depth of concepts, along with information about each
talk.

Loading all three documents into ConceptScope creates three
panels (similar to that shown for two papers in Fig. 2), each con-
taining the Bubble Treemap view, transcript view, and raw text
view for the corresponding transcript. The Bubble Treemap imme-
diately illustrates the differences and similarities between concepts
across the three talks, which can further be explored as all three
views are coordinated. We notice that all three of the talks mention
concepts under the parent topics of “internet”, “computer secu-
rity” and “artificial intelligence”. One reasonable explanation is that
these topics cover many basic terms in computer science, so it is
almost unavoidable to use them in a computer-science-related tech-
nical presentation. When inspecting the concept list and Bubble
Treemaps, we notice that concepts that belong to “artificial intel-
ligence” appear more in talk No. 2 and talk No. 3, which makes
sense as the two talks have the additional tag of “AI” on the TED
webpage.

Talk No. 1 discusses the issue of privacy on online forums, and
concepts of privacy and anonymity fall outside the current version
of the computer science ontology. In addition, the talk does not
delve deep into computer science concepts. This results in a Bubble
Treemap that covers very few concepts. Talk No. 2 is delivered
by a data scientist who talks about computer science concepts,
specifically “algorithms”, “machine learning”, and “deep learning”,
which are reflected in the Bubble Treemap. Finally, Talk No. 3 is
presented by a philosopher who talks about broader implications
of machine learning, also providing a historical perspective. This
is reflected in the Bubble Treemap, showing the broadest concept
coverage of the three talks, with no one concept being too dominant.

7 STUDY
We conducted a controlled study to evaluate whether the visualiza-
tion & interaction design and the use of a domain-specific reference
ontology renders ConceptScope effective in exploring single docu-
ments or comparing multiple documents. Specifically, we intended
to understand whether ConceptScope was effective in helping users:
(1) summarize the content of a document with a domain-specific
concept overview (R1); (2) glean what a document says about any
given concept in the context of the document (R2); (3) become
aware of new concepts and their connections (R3); and (4) discover
enough similarities and differences amongmultiple documents (R4).
In order to provide a baseline, we used DocuBurst [8], the popular
content-oriented document visualization tool that provides a non-
domain-specific overview of documents using the WordNet [14]
taxonomy. We thus conducted a between-subjects study compar-
ing participants that used ConceptScope with participants that
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(a) ConceptScope Interface (b) DocuBurst Interface

Figure 3: Overview of an IEEE VIS 2019 Paper [10] using ConceptScope (left) and using DocuBurst (right).

The case for anonymity online

Speaker Profile: Organization founder
Tag: Internet origin stories
Duration: 11:09
# of Concepts: 7

What happens when our computer gets 
smarter than we are?
Speaker Profile: Data Scientist
Tag: Artificial intelligence
Duration: 16:03
# of Concepts: 13

The wonderful and terrifying implications 
of computers that can learn
Speaker Profile: Philosopher
Tag: Artificial intelligence
Duration: 19:17
# of Concepts: 12

Figure 4: ConceptScope visualizations comparing the transcripts of three TED Talks. The title of each talk is shown in red
under each visualization, along with speaker profile and talk metadata. Also shown is the number of concepts from CSO
found in each document.

used DocuBurst. Please note that the generalizability of this study
might be affected by the limited number of participants we could
recruit and the diverse devices they used due to safety measures
surrounding COVID-19. However, the way we report the insights
were mainly based on patterns and not numbers, so the validity is
not highly impacted by those factors.

7.1 Participants
We recruited 18 participants (10 female, 8male) aged between 18 and
44 years. The participants comprised 16 Ph.D. students, 1 undergrad-
uate student, and 1 employee of a technology company. Seventeen
participants had computer science backgrounds, of which 12 spe-
cialized in visualization and HCI, 1 in high-performance computing,
1 in natural language generation and multi-modal learning, while 3

didn’t report their specialized field. The one remaining participant
had a design and education background, specializing in learning
and user experience design. Two of the 18 participants reported
themselves as native English speakers.

7.2 Conditions and Task Design
Most document visualization systems use either intrinsic statistical
information such as topic models and word co-occurrences, or
human-curated categories that do not scale to large knowledge
bases (e.g. [33]). Per Kucher et al.’s survey [28], which is currently
up to date2, DocuBurst is the only knowledge-based document
exploration system. We thus chose DocuBurst as the baseline for
our evaluation.

2Text Visualization Browser: https://textvis.lnu.se/

https://textvis.lnu.se/
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DocuBurst provides an overview of documents based on the non-
domain-specific “is-a” relationship inWordNet, while our prototype
is based on domain-specific ontologies, in this case, the Computer
Science Ontology (CSO). We asked each participant to perform the
same tasks using the interface assigned to them (ConceptScope or
DocuBurst) and compared interaction and behavior patterns across
participants. Participants were given time to familiarize themselves
with their assigned interface. They were then asked to perform the
following tasks:

T1 Explore one single document: This task was divided
into several sub-tasks, each aligned with a corresponding
design requirement: (1) summarize the documents and pro-
vide relevant keywords (R1); (2) describe a specified concept
based on its usage in the document (R2); (3) select (from a
list of description) the context in which a given concept is
used in the document (R2); (4) define several concepts before
and after using the system, as well as rate confidence with
the definition (R3); (5) identify concepts in the document
related to a given concept (R3); and (6) list the concepts
(that the participants did not know before the study) in the
document (R3). Participants were also asked whether they
read the documents before the study to account for potential
confounds.

T2 Compare two documents: The participants were asked
to compare two documents at a conceptual level (R4). There-
fore, they were asked to identify common and unique con-
cepts, as well as overall similarities and differences between
the two documents. Again, they were asked whether they
read the documents before the study to eliminate bias.

T3 Compare three documents: The questions that partici-
pants were asked to answer in this task were generally the
same as task T2 but for three documents. One difference was
that participants were suggested to “identify a theme and ex-
plain their difference within the theme” when identifying the
difference between three documents. Since DocuBurst was
not capable of comparing more than two documents, this
task was only assigned to participants using ConceptScope
in the study.

In order to mirror participants’ regular reading experience, we
chose computer-science related academic papers or technical re-
ports for all tasks of this study. For task T1 we used Munzner’s
nested model for validating visualizations [32]. Task T2 involved
two papers discussing animation techniques: the first, a general
evaluation of how animation could help users build a mental map
of spatial information [5], while the other focused on the role of
animation in dynamic graph visualization [3]. To alleviate partic-
ipant fatigue and manage their time, we chose to use relatively
shorter transcripts of three 15–20 minute Ted Talks [7, 23, 43] in
the “artificial intelligence” playlist instead of academic papers for
task T3.

7.3 Study Setup
We conducted the study remotely owing to safety measures sur-
rounding COVID-19. The participants were asked to access either
of the tools from a remote server and participate in the study with

their own machine and external devices. Fourteen of them used
laptops with screen sizes ranging from 13 in. to 16 in. The other 5
used monitors with screen sizes ranging from 24 in. to 32 in. Fifteen
participants used the Chrome browser, 2 used Safari, while one
used Firefox for the tasks.

The setup, tasks, and durations were decided based on a within-
subjects pilot of the study described above with 2 participants:
one native and one non-native English speaker. ConceptScope and
DocuBurst employed different datasets in this study. The decisions
to suggest time durations for the questions and to set up the final
study as a between-subjects study were made based on the long
duration of each session and on the participant’s fatigue toward
the end of each session.

7.4 Procedure
Participants first responded to an online pre-survey providing their
demographic and background information. Once they had finished
familiarizing themselves with the interface, the participants per-
formed the tasks described in Sec. 7.2. Participants followed a con-
current think-aloud protocol while executing the tasks, with the
moderator recording their verbalizations and their screen through a
videoconferencing application. Finally, the participants were invited
to finish a brief survey about the tool and share their feedback about
their experience with the interface, both as open-ended responses
and on the NASA TLX scale [20].

8 RESULTS AND DISCUSSION
8.1 General Behavior Patterns
We categorized participants into two groups based on how they
attempted to gather the information they needed to answer the
questions, rather than how they used the tools in general. One
group comprised participants that mainly used the visualization,
and the other, those that mainly used the raw text display. Seven of
the 9 participants who used ConceptScope primarily used the main
Bubble Treemap visualization to glean the required information,
while the remaining 2 relied more on the raw text reading from
the document. In DocuBurst, only 5 of the 9 participants used the
main Sunburst diagram as their main source of information, while
4 chiefly relied on close-reading of the text.

Participants using ConceptScope used the main visualization
more than participants using DocuBurst. This was partly due to
the raw text reading experience offered by the two interfaces, and
partly due to the ability of the visualizations and the knowledge
base in conveying a relevant overview. In ConceptScope, documents
were split into sentences and displayed in a relatively small vertical
space (see Fig. 2c). Therefore, participants tended to read only a
few sentences prior to and after the key sentence for a specific task
instead of going through larger blocks of text. As participant Pc7
stated, “because my resolution is small and my mouse is sensitive,
so when I move it jumps between the text very easily (in transcript
view). And this box (the tooltip showing the corresponding sentence)
doesn’t include the complete paragraph, so it’s easy to get lost...”. In
contrast, DocuBurst showed text as paragraphs in a view that used
more vertical space, such that users were able to read the sentences
more easily. “One thing I like this system is when I click some words,
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they divide it as paragraph rather than the entire document...help me
read more specifically”, said participant Pd3.

When answering a given question, 7 of the 9 participants us-
ing ConceptScope searched or explored related information in the
interface and summarized their findings. The remaining 2 mainly
attempted to recall the answer from earlier explorations and then
referred to the interface to confirm. For DocuBurst, this distribution
was 5 participants chiefly exploring the interface, and 4 chiefly re-
calling the answer. Compared to ConceptScope, more participants
using DocuBurst answered questions from memory, almost equal
to the number of participants who explored the visualizations to
find answers. Participant comments indicated that they felt they
might spend too much time in locating the required information.
For instance, when trying to find common concepts between two
documents (task T2), participant Pd9 who used DocuBurst com-
mented that “it is really hard to see all of them (words in the sunburst
diagram). And I really wanna expand one of those, but then I’m not
sure if it will cover all the things that I wanna see. . . . It’s hard to go
back to where you came from”. Similar comments were also made
by those participants using DocuBurst to first gather information
before answering the question. In this study, we did not screen
participants based on document familiarity as their responses were
valuable to us regardless of their prior knowledge of the document.
We had 1 participant in each group (Pc9 and Pd5) who had read
the document for T1. Pc9 answered questions faster than the other
participants, while Pd5 used close reading rather than Docuburst’s
Sunburst diagram to answer questions, saying, “I don’t know how
to use this tool to help me read this paper.”

8.2 Task-Level Observations
We further separate task-wise participant behavior based on how
they achieved specific objectives within tasks. This behavior was
not restricted to any one task; rather, it characterized how certain
participants chose to access information across tasks.

Document Sensemaking:When exploring the full document
(T1), participants across both interfaces attempted to use the visual-
ization to quickly get a sense of what topics were addressed in the
document. Ten of the 18 participants (6 using ConceptScope, 4 using
DocuBurst) were able to quickly identify that the document was an
“InfoVis paper”. Certain participant behaviors were similar across
both interfaces. Most of them explored the document using the
main visualization first, and only later resorted to close reading of
the text. Even after recognizing it as an academic paper, only 2 par-
ticipants relied on the paper structure (e.g., abstract/introduction)
to get a sense of the document.

However, DocuBurst users were more easily overwhelmed by
the large number of words in the Sunburst diagram, many of which
(they felt) were not closely related to the main theme of the docu-
ment. Participant Pd3 observed, “some words maybe appear really
frequently, but it’s actually not very important ... it’s just because it’s
used very frequently by any document.” Another participant (Pd2)
found it difficult to organize the words into themes, saying “it is
a little bit hard to place the information together, because you don’t
know what the correlation is between (among) these things (i.e. the
concepts provided)”

Participants’ perception of the document when using Con-
ceptScope was largely influenced by the extent of overlap between
the document text and the ontology. For instance, the concept “vi-
sualization” being well-defined in the ontology, was successfully
identified by 8 out of 9 participants in T1. However, the concept “an-
imation” was not as well-defined in CSO, as a result of which 5 out
of 9 participants failed to determine that task T2 involved papers
discussing animation. In comparison, 8 of the 9 using DocuBurst
were able to successfully identify the animation theme.

Concept Sensemaking: When making sense of a concept (R2,
R3), most of the participants chose to locate it in the main visu-
alization first, and only then looked at the other views to answer
relevant questions. To locate a specific concept in the visualization,
participants’ strategies varied based on the solutions available in
the interface and their preference.

In ConceptScope, 5 of the 9 participants used the search feature,
while the others preferred to visually search the concept in the
interface, i.e. looking it up in the concept list or directly checking
the Bubble Treemap. Since DocuBurst did not feature a search box
available, all 9 participants set the concept to locate as the root word.
However, eight of the 9 participants failed with this strategy and
had to set alternatives of the original concept (e.g. a parent concept,
a synonym, or a substring of the target concept) as root words.
One unique strategy that at least 3 participants used to search in
DocuBurst was to start from higher-level concepts and dive deeper
towards their targets in the sunburst diagram. Once again, their
success depended on their choice of parent concepts: they often
lost their way as they could not retrace their steps. In comparison,
participants found it more straightforward to locate concepts in
ConceptScope.

While participants using either interface chiefly attempted to
define a concept (R1) by referring to the context of its use (R2),
their approach to identify the context was different across the in-
terfaces. In ConceptScope, the concordance view was used the
most, with all 9 participants using this view to identify the con-
text at least once. This was followed by the close reading of the
transcript (used by 7 participants), with the word cloud being used
by 6 participants at least once. Although DocuBurst also provided
a word cloud, only 2 participants used it for context. This was
likely because DocuBurst’s word cloud was not organized into con-
cepts as done in ConceptScope, and furthermore, the word cloud in
DocuBurst—designed to supplement the main visualization—only
featured proper nouns that would not otherwise be visualized in
the Sunburst diagram. To find related concepts (R3), participants
using ConceptScope chiefly referred to the Bubble Treemap while
DocuBurst users referred to the raw text view.

Multi-document Comparison:We observed participants’ be-
havior when comparing documents both at the conceptual level
and the full-text level (R4). Participants using ConceptScope used
several techniques including highlighting concepts in the Bubble
Treemap, highlighting concepts in the concept list, checking the
relevant sparklines, and comparing the word cloud within a con-
cept group. Five of the 9 participants reported that these techniques
were sufficient to answer all of the questions in tasks T2 and T3.
Participant Pc1 observed, “just looking at this (the Bubble Treemap
for the third document in T3), you can see some colors are different,
means some different concepts exist here... you can immediately see it”.
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When the visual clues were not enough to aid them to summarize
the similarities or differences between/among the documents, the
other 4 participants resorted to close reading of the document.

In contrast, most of the participants using DocuBurst mentioned
that the visualizations and interactions were not sufficient to help
them compare the concepts or full text of the documents. Partici-
pant Pd5 commented, “the visual encoding (distinguishing concepts
between documents) is confusing to me”. Participant Pd9 felt “it is
really hard to see all of them (concepts)” when they tried to iden-
tify unique concepts of one document. Both participant Pd1 and
Pd8 were distracted by such general words as “part” and “paper”,
because they were the only few words marked as being shared by
both documents. As a solution, they chose to read the document
text closely to make sure their responses to the questions were
accurate enough.

8.3 Overall Feedback
Fig. 5 shows the difference in participant experience for the study
between ConceptScope and DocuBurst. We can see from the figure
that participants’ experience was more or less similar between the
two interfaces with the exception of frustration: participants using
ConceptScope were less frustrated (Md = 2, IQR = 1) than those
using DocuBurst (Md = 4, IQR = 4). Observation and feedback
indicated that participants using DocuBurst found themselves dis-
tracted by less relevant concepts. Participant Pd3 stated that the
interface didn’t provide “important” keywords as expected: “When
I click ‘person’... it (the corresponding sector in sunburst diagram)
is really big, means that it is important. However, I don’t think it
is important based on what I’ve seen”. Participant Pd4 mistook the
document in task T1 for a medical paper and participant Pd9 mis-
took those in T2 as related to chemistry, based on their (mistaken)
interpretation of proper nouns in the word cloud.

As general feedback, most participants using ConceptScope con-
sidered it suitable to provide an overview for unfamiliar documents,
while those using DocuBurst felt it was better suited as a supplemen-
tary tool when exploring familiar documents. Typical comments
about ConceptScope included “these multiple views are nice and
easy to understand”(participant Pc2), “it seems like a pretty useful
tool especially for exploring large set of documents to get an idea of
what the main topics are, what kind of researchers are active” (Pc7).
With DocuBurst, participant Pd2 suggested that “the tool should be
used as a supplementary tool ... doesn’t help too much with under-
standing the document”. In addition, participants also reflected that
the learning curves for both tools were relatively steep. “It was hard
at the beginning, but not so hard later”, commented participant Pc4.

When regarding the features of each interface, the Level Slicer
(Sec. 5.2.1) in ConceptScope was marked as least useful by partic-
ipants. Participant Pc1 observed that “the level slicer is probably
useful if the document is extremely complex ... but this dataset is
relatively simple”. Three of the participants thought the list view
(Sec. 5.1.2) was the most useful feature. We also observed 7 par-
ticipants used it for comparison tasks and 4 participants used it
to search target concepts in the study. Only 2 participants rated
the Bubble Treemap (Sec. 5.1.1) as the most useful feature, while
one marked it as the least useful one. Yet, we did see 7 participants

used it as their major source of visual clues when comparing mul-
tiple documents. It is likely that the participants used the Bubble
Treemap as providing supplementary information to the concept
list view, which they found to be most useful.

9 LIMITATIONS AND FUTUREWORK
Based on participant behavior and feedback, we illustrate that
ConceptScope’s ontology-based visualization and grouped word
clouds help participants define and contextualize concepts, and—
for a given concept—explore other concepts related to it. On the
other hand, ConceptScope’s domain dependency makes it less suit-
able for reviewing text that spans multiple disciplines. In contrast,
DocuBurst’s domain-agnostic reference (i.e. WordNet) allows it
to be applied more widely, though the overviews are less useful
when highly domain-specific content is visualized. In addition,
DocuBurst’s interface is more amenable to close reading of the
document.

Our study can be considered preliminary, as we were interested
in participants’ exploratory behavior, insights, and comprehension.
We plan to conduct longitudinal studies to evaluate the utility of
ConceptScope as a tool for preliminary review and further explo-
ration before and after close-reading of documents, and examine
additional encodings such as position constancy of concepts in the
bubble treemap for document comparison.

In the future, we plan to address issues relating to the ontology
lookup. One main disadvantage is the dependence on ontologies
that may or may not be mature. We currently use DBPedia to
“broaden” our lookup, but using DBPedia detracts from the strict
definitions and relationship requirements to which domain ontolo-
gies need to adhere. Our Bubble Treemap visualization as well as
our ontology lookup can currently support only one ontology. This
makes it difficult to view documents of an interdisciplinary nature.
We also intend to explore the application of our approach to real-
time visualizations of online forums or technical communication
in the form of emails or instant messengers.

10 CONCLUSION
In this paper, we proposed ConceptScope, an interface that aids a
knowledge-based exploration and comparison of documents based
on a reference domain ontology. We present the use of a Bubble
Treemap visualization as the primary overview visualization to
show the distribution of concepts for a document of interest, and
describe our approach to translate document content into appropri-
ate queries that best reflect the concept spread and show their hier-
archical relationships in the domain ontology. We illustrate our ap-
proach using the Computer Science Ontology as our reference. We
demonstrate the use of ConceptScope for document exploration and
comparison, and then evaluate ConceptScope against DocuBurst,
the only other overview visualization based on human-curated
knowledge. We find that ConceptScope offers greater advantages
in terms of domain-specificity, contextual views, and comparison
of multiple documents, but not for close reading of documents,
or documents spanning multiple domains. DocuBurst’s domain-
agnosticism makes it more suitable for a general-purpose document
exploration tool spanning multiple domains, but less so for multi-
document comparison or in-depth, domain-specific exploration.
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Figure 5: Distribution of NASA TLX responses showing participant feedback towards ConceptScope and DocuBurst. A ▼ sym-
bol indicateswhere a user familiarwith the document (Pc9 forConceptScope and Pd5 forDocuBurst) has rated their experience.

Our future research aims to address this issue by enabling the use
of multiple reference ontologies, and explore text content such as
online forums and organizational communication.
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