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ABSTRACT

Analysis of large, high-dimensional, and heterogeneous datasets
is challenging as no one technique is suitable for visualizing and
clustering such data in order to make sense of the underlying infor-
mation. For instance, heterogeneous logs detailing machine repair
and maintenance in an organization often need to be analyzed to
diagnose errors and identify abnormal patterns, formalize root-cause
analyses, and plan preventive maintenance. Such real-world datasets
are also beset by issues such as inconsistent and/or missing entries.
To conduct an effective diagnosis, it is important to extract and under-
stand patterns from the data with support from analytic algorithms
(e.g., finding that certain kinds of machine complaints occur more
in the summer) while involving the human-in-the-loop. To address
these challenges, we adopt existing techniques for dimensionality
reduction (DR) and clustering of numerical, categorical, and text
data dimensions, and introduce a visual analytics approach that uses
multiple coordinated views to connect DR + clustering results across
each kind of the data dimension stated. To help analysts label the
clusters, each clustering view is supplemented with techniques and
visualizations that contrast a cluster of interest with the rest of the
dataset. Our approach assists analysts to make sense of machine
maintenance logs and their errors. Then the gained insights help
them carry out preventive maintenance. We illustrate and evaluate
our approach through use cases and expert studies respectively, and
discuss generalization of the approach to other heterogeneous data.

Keywords: Visual analytics, heterogeneous data, high-dimensional
data, machine learning, text analytics, maintenance logs.

1 INTRODUCTION

Making sense of large-scale, heterogeneous data is one of the main
challenges faced by data science and visualization communities in
real-world application scenarios. For instance, in large-scale man-
ufacturing setups, human- and machine-created logs of operation
and maintenance need to be analyzed to identify problem areas and
prevent major failures before they occur [8]. These logs can easily
number over hundreds of thousands of records and often include
multiple types of data: numerical data (e.g., operating tempera-
tures), categorical data (e.g., machine types), ordinal data (e.g., error
severity), and text data (e.g., machine status description) [26]. In
addition, such logs also feature manual entries—including natural-
language descriptions—which are prone to inconsistencies, such
as the same problem described differently at different times or by
different people [44]. These factors make it difficult for managers
and technicians—even with the help of data analysts—to analyze
logs to identify patterns (e.g., common phenomena seen in some
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type of errors) and perform preventive maintenance. While such
issues are common in maintenance analysis and prognostics, the
challenge of heterogeneous and inconsistent data spans domains.

Machine learning (ML) assisted visual analytics has been devel-
oped to address the challenge in reviewing large, high-dimensional
data [42, 52]. For instance, researchers have used dimensionality
reduction (DR) to provide an overview of high-dimensional data in
lower dimensions [28, 54] and clustering to summarize the informa-
tion of large data into a small number of groups [3, 29]. Contrastive
learning, which extracts salient patterns in one dataset relative to
the other, is then used to help interpret the results of DR and clus-
tering [20, 22]. Such approaches can help maintenance log analysts
extract and explain important patterns specific to certain kinds of
issues, while data inconsistency can be mitigated by keeping the
human in the loop. However, these ML methods are designed to
apply to a single datatype, such as numerical or categorical. Thus,
when analyzing heterogeneous data, we need to consolidate differ-
ent methods. In addition, existing contrastive learning methods are
applicable only to either numerical or binary data. New methods for
other datatypes (e.g., categorical and text) are needed.

In this paper, we present an approach to separate different variable
types—numerical, categorical, and text—in a heterogeneous dataset
and provide lower-dimensional, clustered visualizations for each
type. We then use ccPCA [20]—contrasting clusters in Principal
Component Analysis—as the contrastive learning method for nu-
merical variables in the data. To provide a similar functionality for
categorical variables, we introduce a method called contrasting clus-
ters in Multiple Correspondence Analysis (ccMCA). ccMCA helps
characterize a selected cluster (of categorical data) by comparing
its attributes with those of the remaining data. For text variables,
we first convert natural-language descriptions into high-dimensional
vectors using word embeddings [48], and then perform DR and
clustering. In place of contrastive learning, we plot text frequencies
compare each cluster with the rest of the data.

Finally, we link the visualizations across all the views to help
the analyst characterize clusters in the context of the other data
dimensions. We illustrate our approach with use-case scenarios and
expert reviews using a real-world dataset of maintenance and repair
logs for heating, ventilation, and air-conditioning (HVAC) systems.

Our main contributions include: (1) integrating existing DR and
clustering techniques to make sense of multidimensional, hetero-
geneous maintenance log data by introducing a visual analytics
approach to coordinate views resulting from these techniques for
each datatype, (2) introducing a new contrastive learning method
called ccMCA to help the user characterize data clustered on the ba-
sis of categorical dimensions, and (3) illustrating the use of domain
knowledge to characterize the clustered data.

2 RELATED WORK

While the proposed work falls under the application area of machine
maintenance data analysis, our approach draws from and contributes
to existing approaches in heterogeneous and high-dimensional data.
We highlight representative research on these topics in this section.



2.1 Machine Maintenance Log Analysis
With an increasing emphasis on smart manufacturing and reducing
machine downtime, process monitoring, diagnostics, and prognos-
tics have gained prevalence. This trend—coupled with cheaper and
more accessible sensors and data storage solutions—has led to an
increase in maintenance data [8]. Despite the potential benefits
of high-volume maintenance data for better machine management,
companies frequently struggle to adopt advanced manufacturing
technologies and strategies due to cost and lack of technical ex-
pertise in data analysis [27]. Simple yet powerful solutions for
data analysis are necessary to aid manufacturers in improving their
practices. There has been an increasing focus on sensor data and
predictive maintenance using AI techniques [11,51]. However, these
works often neglect a large portion of maintenance data: natural
language, short-text maintenance logs. Annotation methods for
short-text maintenance work orders [34,43] have been the subject of
recent research. For instance, Sexton et al. [45] developed Nestor
(https://nist.gov/services-resources/software/nestor), an open-source
tool that uses internal “importance” heuristics and seed data anno-
tated with domain-relevant tags by experts. Nestor uses these to
annotate maintenance logs with similar tags.

Visual analytics is another technique that has gained popularity
in this domain in recent years. Notable work in visual analytics
for machine log visualization and monitoring includes ViDX [56]
for historical analysis and real-time monitoring of assembly lines,
La VALSE [24] and MELA [46] for interactive event analysis logs,
and ViBR [12] for vehicle fault diagnostics. These approaches are
created for specific datatypes. On the other hand, we treat the data as
high-dimensional, heterogeneous datasets that include unstructured
text, making our approach usable across different domains.

2.2 Visualizing Heterogeneous Data
The challenges of visualizing heterogeneous data, i.e., data with
mixed datatypes or variables, such as numerical, categorical, and
text, were recognized early in visualization research. Almost 25
years ago, Zhou and Feiner [57] provided a systematic approach to
design visualizations for heterogeneous data based on data charac-
teristics and the tasks involved. The size of heterogeneous datasets
poses additional challenges for visualization, such as requiring large
screens and appropriate visual mappings. Different approaches were
developed to address these challenges, such as developing automated
specification algorithms to map data attributes to visual attributes [9],
and high-resolution immersive visualization environments [40].

Visualizing heterogeneous data also provides a way for the user to
establish context. For instance, coordinated timeline visualizations
of audio, video, and text data of human-human or human-machine
interactions can provide context to observations about movement,
speech, and activity data [13, 19]. More recently, immersive visual-
izations of system activity overlaid on a spatial layout corresponding
to the physical locations of said systems were used to provide con-
textual information in real-time network security analysis [35].

Unstructured text also forms an important datatype. Descriptive
text about problems and repairs is often entered by operators and
maintenance personnel who assume familiarity with the machines
and related processes. The text thus tends to be terse and laden
with jargon, and is often inconsistent across people. Developing
a lexicon—a domain-specific vocabulary—is often necessary to
interpret such text data in a semantically consistent way. The General
Inquirer [50] is one of the earliest attempts to build a lexicon for
content analysis of text. Categories such as Linguistic Inquiry and
Word Count (LIWC) [39] focus on psychological relevance (such as
moods) and general-purpose applications. Such models are trained
on general text corpora such as news articles, online forums, and
fiction. For application to large-scale technical text data, automated
tagging needs to be balanced via manual sifting of the text.

Visual analytics has been used to achieve better-balanced tags,

using a combination of high-dimensional data visualizations and
user-steered analyses. For instance, ConceptVector [37] visualizes
word-to-concept similarities to guide users to categorize text data
given a specific domain, such as politics or finance. Similar vec-
tor space representations are used by Heimerl and Gleicher [25] to
design visualizations that help users understand word vector embed-
dings. In addition, several tools such as the Exploratory Labeling
Assistant [18] and AILA [14] use machine-learning based recom-
mendations to help users characterize or label documents.

Drawing from this combination of statistical and manual ap-
proaches, we use word embeddings to translate short texts to high-
dimensional vectors, and apply DR and clustering to find groups of
semantically related short texts in a 2D space. We use similar DR and
clustering representations for numerical and text data dimensions,
which gives us consistent representations across datatypes.

2.3 Visualizing High-Dimensional Data
Most machine maintenance log data tend to be high-dimensional,
as each breakdown or maintenance event is recorded with multiple
fields relating to different personnel and/or departments [44]. While
high dimensionality has its advantages, such as the ability to con-
textualize and correlate features of the data, it also makes the data
less usable for sampling or statistical analysis [15]. Dimensionality
reduction provides a lower-dimensional representation while pre-
serving the essential information of the original data [54]. Nonlinear
DR techniques, such as UMAP [36], are especially relevant for
large-scale, high-dimensional data as they preserve local neighbor
relationships, which can help identify subgroups in the data.

DR can be further exploited to cluster the data with higher speed
and performance [47] or to produce an overview of the data [32, 42].
During this process, visual analytics of the clustered data is often
needed to help users determine which attributes contribute to the
distinctness of each cluster [5]. Statistical charts (e.g., boxplots) [29]
or density plots [49] of selected clusters from the DR result have
been used for this purpose. However, showing one statistical chart
for each attribute becomes visually overloaded as the number of
attributes increases. A better approach would be to identify and
visualize salient attributes that contribute to a selected cluster. For
instance, Broeksema et al. [6] visualized the results of multiple
correspondence analysis (MCA) [30]—a variant of principal compo-
nent analysis (PCA) for categorical data—together with a colored
Voronoi cell that represents a highly-related attribute to each data
point. Similarly, Joia et al. [28] drew a convex hull around each
cluster and filled the resulting polygon with a word cloud consisting
of names of the attributes related to the cluster. Faust et al. [17] took
a different approach, using local perturbations in the input data to
represent how the higher dimensions are represented in the projected
views. More recently, Fujiwara et al. [20] used contrastive learning
to find attributes that contrast a selected cluster from the rest of the
data. We incorporate this contrastive learning-based approach to
analyze the numerical attributes of the maintenance log data while
introducing an analogous approach for the categorical attributes.

3 REQUIREMENTS

Typically, visual analysis of heterogeneous, multidimensional data
is performed with the goal of identifying patterns within the data
and extracting meaning from them [2, 55]. With our application
area of machine maintenance data analysis in mind, we draw our re-
quirements from existing work on maintaining and tagging machine
performance, error, and maintenance log data.

Most of our requirements are based on prior work by Brundage
et al. [7, 8] who generate a set of commonly-occurring data ele-
ments from their study of various maintenance work order datasets
including temporal (e.g., time between failures, machine downtime,
etc.), machine (machine type, location, etc.) human (operator/tech
name, skill level, etc.), raw text (problem descriptions, solution,
etc.), and tagged elements (items, actions, etc.). Broadly speaking,
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Figure 1: Data processing pipeline for individual views based on the category of data dimensions (categorical, text, and numerical). The figure
also shows which views are linked via selection and filtering interactions.

these elements can be classified based on their datatype as numerical,
categorical, and text. They also propose a maintenance management
workflow with six steps: (1) analyzing the work order, (2) selecting
and prioritizing work orders, (3) planning equipment, resources, and
labor, (4) scheduling the tasks involved, (5) executing the tasks, and
(6) completing and documenting the tasks performed. Our goal is to
aid the user—assumed to be a planning engineer or an analyst—in
the execution of Steps 1–3. Depending on the scenario, this may
require accurate identification of the maintenance task involved, us-
ing maintenance logs to anticipate component failure, or correcting
work orders with misdiagnosed problems or misidentified tasks.

We thus infer that a system that uses maintenance log data to
aid maintenance planning and management needs to be robust to
different datatypes, supports visual analysis of data at scale, and
helps the user characterize and label parts of the data based on their
domain knowledge. The system requirements are:
R1 Robustness to Datatype: The system should accommodate

all three types of data commonly required for the analysis of
maintenance logs, i.e., numerical, categorical, and text data.
Given the inherent difference between the datatypes, an appro-
priate analysis approach is needed for each.

R2 Scalability: Maintenance log data in an organization can vary
from a few thousand records to hundreds of thousands of
records, depending on the organization size. With each record
consisting of several dimensions of mixed datatypes, the sys-
tem needs to be robust to different data scales.

R3 Data Subset Identification: When visualizing large-scale
data with heterogeneous dimensions, it is not optimal or prac-
tical to start by examining individual data points. It is more
important and efficient to be able to identify subsets compris-
ing data points that are closely related to each other. This may
mean that all data points in an identified subset have common
attributes, or that they may be related to each other based on
their values along multiple dimensions. With different dimen-
sions composed of different datatypes, the system should allow
subset identification approaches suitable across datatypes.

R4 Data Subset Characterization: Analyzing maintenance logs
requires not only the identification of patterns/subsets within
the data, but also their characterization, or what separates
them. For instance, a problem common to a group of machines
could be characterized by all machines being similar (e.g.,
lathes), or requiring replacement of the same component, or
of components supplied by the same vendor. Identifying such
common characteristics become more difficult as the relation-
ship shared by a subset of maintenance logs becomes more
complex. Thus, the system should provide effective analysis
support to characterize the subsets from many dimensions.

R5 Extensibility: Different organizations may choose to log in-
formation about their maintenance activity in different forms
and granularities. The only aspect that may be common across
these datasets is that they are likely to be multidimensional and
heterogeneous. The system should be extensible to a different
dataset with minimal effort, and not be overly dependent on
any one specific dataset’s attributes or format.

4 DATA PROCESSING & VISUALIZATION

Based on the requirements identified in Sect. 3, it is clear that
the three types of data common to machine maintenance logs—
numerical, categorical, and text—need to be processed appropriately
and visualized using approaches that are robust to changes in the data
scale. In this section, we describe the data processing approaches
and visualization designs that address the identified requirements1 .

4.1 Workflow
In Sect. 2, we see that visualizing heterogeneous data is advanta-
geous as it allows the user to draw inferences based on context from
different data dimensions. We also see that the issues of scale and
dimensionality make it challenging for such observations and infer-
ences to be drawn. Both issues are addressed by using clustering
techniques to form subsets within the data (requirement R3). These
can then be visually and interactively explored to understand the
relationship between the data points that make up the subset.

To aggregate the techniques mentioned above, we model our
data processing and visualization workflow as a pipeline with six
steps: Step 1: grouping the data dimensions together based on their
datatype (Fig. 1 stage 1); Step 2: performing DR for numerical,
categorical, and text data separately and obtaining a 2D projection
for each (Fig. 1 stage 2); Step 3: clustering the 2D data to form
subsets (Fig. 1 stage 2); Step 4: visualizing the 2D projection and
clustering results to provide scalable overviews of the dataset (Fig. 1
stage 3 and Fig. 2 A1, B1, C1); Step 5: characterizing the clusters
separately for each datatype using contrastive learning or statistical
methods (Fig. 1 stage 2); Step 6: cluster characterization for each
datatype with an appropriate visualization (Fig. 1 stage 4 and Fig. 2
A2, B2, C2). Each step is detailed in the rest of this section.

4.2 Identifying Subsets in Heterogeneous Data
DR (step 2) and clustering (step 3) are two essential data process-
ing steps to identify subsets in the data. Informed by our review
in Sect. 2.3, we choose UMAP [36] to project the data to a lower-
dimensional space. By using a nonlinear DR method such as UMAP,
we can effectively extract similar records from high-dimensional

1The source code is available at https://github.com/Xiaoyu1993/Machine-
Maintenance-Log-Analysis.
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Figure 2: Dashboard interface showing projected views of categorical components (A1), text components (B1), and numerical components (C1) of
the dataset using the DR algorithm UMAP. Each projected view is clustered using a chosen clustering algorithm (DBSCAN in the example above).
Each projected view is supported by an additional view that is used to characterize a chosen cluster in that view. For the categorical data view,
ccMCA (A2) is used to show the selected cluster’s separation and the attribute values that contribute to it. A text frequency chart (B2) contrasts
the text that occurs most frequently in the selected cluster against the overall text frequency in the dataset. Finally, ccPCA is used to display a
heatmap of cluster vs. data dimensions and a histogram showing the value distribution of a selected numerical dimension against the rest of that
data (C2). Raw data for any chosen cluster can be viewed using a slide-out tabular view (D). Linking across views A1, B1, and C1 shows the
distribution of data clustered in the active view (in color) across the other two views (grayscale).

maintenance log data. High-dimensional representations are ob-
tained for the categorical data with one-hot encoding [23], and for
text with word embeddings (see Sect. 4.4.1) before the DR step. The
2D projection of the data can then be clustered using any approach.

We choose DBSCAN (Density-Based Spatial Clustering of Ap-
plications with Noise) [16] as it uses a density-based approach that
is more suitable for data that may have outliers (e.g., an unusual
machine breakdown or repair). Combined with our visualization
approach, this technique is more suitable for our case as the analyst
can probe into individual records in the case of outliers, and can also
examine larger clusters using the linked views. By separating the
data dimensions based on datatype, we ensure that our approach is
robust to datasets with different dimensions with mixed datatypes
(addressing requirement R1). This approach of dimension grouping
by datatype, DR & clustering to find subsets, and characterizing
based on contrastive learning and text frequency comparison makes
our approach extensible to most heterogeneous datasets (R5).

4.3 Scalable Overview
To show an overview of the DR and clustering results (step 4), we use
a hexbin plot [10] for each datatype in the dashboard visualization
shown in Fig. 2, i.e., categorical (Fig. 2A1), text (B1), and numerical
(C1) dimensions. The hexbin plot is robust to different data scales
(requirement R2) in that its rendering speed is not significantly
impacted by data size or screen resolution. Instead of using a linear
color scale typical to hexbin plots, we use a different hue for each
cluster and map data density to color intensity within every cluster.

We also preserve the conventional DR representation, i.e., a
scatterplot with each data object shown by a dot. We adopt Lind-
strom’s [31] Level of Detail (LOD) rendering and allow users to
switch between these two plots or change the granularity of hexago-
nal bins by simply zooming in or out of the area they are interested
in. Thus, only a small part of the scatterplot needs to be rendered
when the users zoom in close. Finally, users can choose to exam-
ine the data objects in detail by perusing the slide-out tabular view
(Fig. 2D) or by hovering over the dots.

Note that at any point, only one of the three clustered views (A1,

B1, or C1 in Fig. 2) can be active. The active view is indicated
by its clusters highlighted with a categorical color palette. The
remaining views are monochromatic/greyscale to prevent the user
from mistakenly assuming that a cluster of one color (e.g., blue) in
one view corresponds to a cluster of the same color in another view.

4.4 Characterizing clusters
Characterizing a cluster or subset in the data (requirement R4) re-
quires the determination of how the cluster is different from the rest
of the data. Different datatypes necessitate different contrastive anal-
ysis techniques. We discuss the techniques we use to characterize
clusters for text, numerical, and categorical data in this subsection.

4.4.1 Text Dimensions
Detailed text descriptions of problems, symptoms, and solutions,
form perhaps the richest component of maintenance log data. They
are also rife with inconsistencies, typographical errors, or the use
of non-standard shorthand that is endemic to that particular organi-
zation. Text descriptions are also often supplemented by “tags”—
standardized phrases that label the descriptions to identify the prob-
lems, items, and solutions. These tags are typically assigned partly
based on the knowledge of the user who tags the descriptive text,
and partly using machine learning approaches [43, 45].

In order to group the data based on text dimensions, the meaning
of the text needs to be considered instead of specific keywords that
may vary across technical personnel. A more consistent seman-
tic representation would focus on the meaning of the text rather
than its form, such that synonyms and related terms are grouped
closely. To achieve this, we use word embeddings, which are vec-
tor representations of words that take into account their semantic
relationships [53]. Words such as “warm” and “hot” can thus be
translated to vectors that are close to each other, but distant from a
vector representing a word different in meaning, such as “telephone”.
We create high-dimensional vector representations for the descrip-
tive text by summing and normalizing words in the text. We then
use a suitable DR technique (UMAP) to obtain 2D projections of
the vectors, and cluster them using DBSCAN (Fig. 3).
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Figure 3: Text processing steps and visualization of the related infor-
mation. The text frequency chart shows frequencies of text occurring
in the selected cluster and contrasts it with both, the frequencies of
the corresponding text in the overall dataset as well as the text that is
most frequently-occurring in the dataset but not in the selected cluster.

Each cluster represents a collection of descriptions. To character-
ize a given cluster, we overlay a frequency plot of the most common
terms occurring in the cluster on a frequency plot of terms occurring
in the overall dataset (Fig. 3 right). Contrasting the most frequent
terms of both plots helps the user identify defining characteristics of
the cluster. For instance, by examining the frequency plots of Cluster
1 in Fig. 3, we can surmise that the cluster represents maintenance
logs of ventilation systems related to lower room temperatures, com-
monly remedied by adjusting certain valves. The user can examine
the raw data related to any cluster using the slide-out tabular view
(Fig. 2D) to further gain insight into the cluster and characterize it
(requirement R4). The cluster labels are editable. For instance, the
user can replace the default cluster name with a more descriptive
phrase “Lower temperature adjustment”.

4.4.2 Numerical Dimensions
As Brundage et al. [7] illustrated with various maintenance key
performance indicators (KPIs), measures such as the number of
problems/breakdowns, time between failures, and time taken to re-
pair can be used to quantify the role of other performance indicators,
such as machine type, problem severity, and technician skill. Other
parameters such as cost can be derived from these factors. To under-
stand how those parameters contribute to the separation of clusters
for numerical data, we adopt a method called ccPCA [20]. We
briefly describe ccPCA and its application to our system. Notations
used in the following sections are summarized in Table 1.

Introduction to cPCA. cPCA aims to reveal enriched patterns
in a target matrix XT relative to a background matrix XB. To do
so, cPCA finds directions (called contrastive principal components,
cPCs) that maximally preserve the variation in XT while simulta-
neously minimizing the variation in XB. This can be achieved by
performing EVD on (CT −αCB) where CT and CB are covariance
matrices of XT and XB, respectively. α (0≤ α ≤ ∞) is a hyperpa-
rameter, called a contrast parameter, which controls the trade-off
between having high target variance and low background variance.
When α = 0, the resultant cPCs only maximize the variance of XT
(i.e., the same with using ordinary PCA). As α increases, cPCs place
greater emphasis on directions that reduce the variance of XB.

Introduction to ccPCA. In order to characterize clusters, ccPCA
utilizes cPCA as its base. Let XE , XK , and XR be matrices of the
entire dataset, a target cluster selected from the entire dataset, and
the rest of the data points, respectively. ccPCA enhances the original
cPCA by using XE as a target matrix and XR as a background matrix,
instead of using XK and XR as target and background matrices, re-
spectively. With the automatic selection of a contrast parameter [20],
ccPCA finds the directions that preserve both the variety and separa-
tion between a target cluster and others. These directions are difficult
to find with the original cPCA (see the work by Fujiwara et al. [20]
for details). By referring to feature contributions (called contrastive
principal component loadings or cPC loadings) to the directions, we
can obtain the information of which numerical features contribute to
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Figure 4: Projection and visualization of numerical data along with
the ccPCA view show that the selected cluster has a lower labor cost
than the rest of the data.

Table 1: Summary of notations.
XT , XB target, background matrices

XE , XK , XR matrices of the entire, target cluster, rest data points
CT , CB, CE , CR covariance matrices of XT , XB, XE , XR
GT , GB, GT , GR disjunctive matrices of XT , XB, XE , XR
ZT , ZB, ZE , ZR probability matrices of GT , GB, GT , GR
BT , BB, BE , BR Burt matrices of XT , XB, XE , XR

α contrast parameter

the uniqueness of a target cluster relative to others.
Visualization. ccPCA provides how strongly each dimension

contributes (positively or negatively) to each cluster’s contrast with
the rest of the data. This contribution is shown as a heatmap
(Fig. 4(3)) that indicates the magnitude and direction of the contribu-
tion of the numerical dimensions to each cluster with a blue-green-
to-brown diverging colormap. By selecting a cell in the heatmap,
Fig. 4(2) shows histograms of the corresponding dimension’s value
distributions of the selected cluster and the rest of the data with the
cluster color and gray color, respectively. Based on Fig. 4(2), we can
infer that the numerical dimension “actual labor cost” (ActLabCost)
contributes strongly to Cluster 0’s contrast against the rest of the
data, and the histograms show that the ActLabCost values for the
selected cluster are much lower than the rest of the data. The user
can further investigate this cluster by selecting it in the DR view
(Fig. 4-1) to examine the corresponding data distribution in the text
and categorical dimension views as described in Sect. 4.3, or ex-
amine the cluster in detail using the tabular view (Fig. 2(D)). Note
that Fig. 4 shows only two numerical dimensions due to the dataset
we analyze; however, as demonstrated in [20], the combination
of using DR, clustering, and ccPCA is useful in identifying and
characterizing subsets within high-dimensional numerical data.

4.4.3 Categorical Dimensions
We cannot use ccPCA—which requires numerical or binary data—
to characterize categorial data (R4). Thus, we introduce a new
contrastive learning method, called contrasting clusters in multiple
correspondence analysis (ccMCA) by extending multiple correspon-
dence analysis (MCA). Table 2 compares the related methods.

Multiple Correspondence Analysis (MCA) Here, we provide
a brief introduction to MCA (refer to [30] for details). MCA can be
considered as PCA for categorical data. That is, MCA learns a lower-
dimensional representation from high-dimensional categorical data
as it maximally preserves the variance of the data. The issue of PCA
when applying to categorical data is that PCA handles each category
in the data as a numerical value and, as a result, it unnecessarily
ranks the categories (e.g., red: 0, green: 1, blue: 2).

To avoid this, MCA first converts an input matrix XT of cate-
gorical data into a disjunctive matrix GT (or disjunctive table) by
applying one-hot encoding to each categorical dimension. For ex-
ample, when XT consists of two columns (or often called questions)
of “color” and “shape” and each has categories (i.e., categorical
answers) of {“red”, “green”, “blue”} and {“circle”, “rectangle”},
GT will have five columns of “red”, “green”, “blue”, “circle”, and
“rectangle” and each of the matrix elements will be either 0 or 1.
Afterward, by dividing each cell in GT with a total of GT , we obtain



Table 2: Comparison of representation learning methods. ccMCA is
a new method we introduce in this paper.

data type method purpose solution

numerical,
binary

PCA preserving the variance of XT EVD on CT
cPCA identifying enriched patterns in XT EVD on (CT −αCB)
ccPCA characterizing a cluster XK EVD on (CE −αCR)

categorical,
binary

MCA preserving the variance of XT EVD on BT
cMCA identifying enriched patterns in XT EVD on (BT −αBB)
ccMCA characterizing a cluster XK EVD on (BE −αBR)

Categorical dimensions

Categorical Dimensions Onehot Encoding 
+ UMAP ccMCA

DR + Clustering

user-selected
cluster

1 Results of Dimensionality reduction (Onehot 
encoding + UMAP) and clustering (DBSCAN)

Distribution of individual data 
points with maximal variance to 
separate the selected cluster

Distribution of categorical 
dimensions and their values 
for the selected cluster

32

GG

2.0

GG

S38
S39S37

S35

Figure 5: Projection of categorical data (1), with the ccMCA view
showing the separation of the selected cluster (2), and its correspond-
ing category distribution (3). The categories of “GG” in “EQUIPMENT”,
2.0 in “WOPRIORITY” (work priority), and S35–S39 in “SUPERVI-
SOR1” are most likely to be the characterization of this cluster.

a probability matrix (or correspondence matrix) ZT . This probability
matrix corresponds to an input feature matrix for PCA. Similar to
PCA, we apply normalization to ZT . With the normalized ZT , we
can obtain a Burt matrix, BT , with BT = Z>T ZT . BT corresponds
to a covariance matrix used in PCA (note: in PCA, a covariance
matrix of XT can be obtained with CT = X>T XT ). Thus, as PCA ob-
tains principal components by performing eigenvalue decomposition
(EVD) on CT , MCA obtains the principal directions by performing
EVD on BT to preserve the variance of GT .

Contrastive MCA (cMCA) Now, we introduce contrastive ver-
sion of MCA (cMCA) [21] and enhance cMCA to ccMCA in the
next subsection. As described above, MCA and PCA fundamentally
share the same idea of finding the best directions to preserve the
variance by using EVD on a covariance matrix. Therefore, we can
extend MCA to cMCA by employing the same idea with cPCA.

Extension from MCA to cMCA. As described in Sect. 4.4.2, the
only difference between PCA and cPCA is that while PCA directly
performs EVD on a target covariance matrix CT , cPCA takes a
subtraction of target and background covariance matrices with a
contrast parameter (i.e., CT −αCB) and then performs EVD on it.
To reveal enriched patterns in a target matrix of categorical values,
we can use the same idea that we use with cPCA and apply it to MCA.
As stated in Sect. 4.4.3, in MCA, a Burt matrix BT contains similar
information with a covariance matrix CT in PCA. Therefore, we can
obtain contrastive directions by computing BT −αBB, where BT and
BB are target and background Burt matrices, and then performing
EVD on (BT − αBB). Here, α (0 ≤ α ≤ ∞) is also a contrast
parameter and has the same role as cPCA.

Contrasting Clusters in MCA (ccMCA) For the cluster char-
acterization, we enhance cMCA to ccMCA. Here, we apply the
similar idea of the extension from cPCA to ccPCA.

Extension from cMCA to ccMCA. cMCA can be enhanced to
ccMCA by using XE and XR as input target and background ma-
trices. Since the directions identified by ccMCA differ based on
the contrast parameter α , we also provide the automatic selection
method of α by employing the same method introduced by Fujiwara
et al. [20], which utilizes the histogram intersection for its optimiza-
tion. Fig. 5(2) shows the ccMCA result when selecting the green
cluster from Fig. 5(1) as a target cluster. The green points are clearly
separated from others while keeping a high variance.

One ccMCA’s major and different challenge from ccPCA is that
how we inform the feature contributions. ccMCA also provides

Cluster 
selected 
by user

Text DimensionsCategorical Dimensions 21 Numerical Dimensions3

Brush 
subtraction

Figure 6: Linking among the projected views of categorical, text, and
numerical data allows the user to explore the data clusters from the
perspective of datatypes. For instance, selecting Cluster “cold, room,
poc” from the projected and clustered view of the text dimensions (2)
highlights the distribution of the same points in the other two views
(1) & (3). We can see some correlation between the selected cluster
and Cluster “room, poc, found” in the categorical dimension view.
The brush and Boolean subtraction tools can be used to refine the
selection and further reveal the correlation between the two clusters.

contributions (or loadings) of each dimension (i.e., category) of
GT with wi =

√
λivi where wi is feature contributions to the i-th

principal direction, λi is the i-th top eigenvalue generated via EVD,
and vi is the corresponding eigenvector. Because EVD is performed
on Burt matrices of GT and GB, which are obtained by applying
one-hot encoding to XT and XB, wi shows a contribution for each
category (e.g., “red”, “green”, and “blue”) but not for each question
(e.g., “color”). Therefore, the number of dimensions of wi can be
easily overwhelmed. For example, when there are 6 questions and
5 categories for each question, the number of dimensions in wi be-
comes 30. Also, as each data point’s position in a ccMCA projection
(e.g., Fig. 5(2)) reflects a compound of contributions, looking at
each contribution may not be sufficient to understand the association
between the projection and contributions. For instance, even when
one category may have a strong contribution to the positive direction
of the first axis (x-axis in Fig. 5(2)), this does not ensure that data
points with large positive x-coordinates have answered the corre-
sponding category because, at the same time, many other categories
may have a weak contribution to the positive direction.

To address this issue, similar to MCA, we provide the principal
cloud of categories (or column principal coordinates), as shown in
Fig. 5(3). In MCA, the principal cloud of categories (PCC) is used
to grasp which categories each data point likely has answered by
comparing the positions of data points in an MCA projection (or the
principal cloud of individuals, PCI) and categories in PCC. When a
data point in PCI is placed at a close position with certain categories
in PCC, this data point tends to have these categories as its answers.
We can also perform the same analysis above for ccMCA.

In MCA, PCC Ycol
T is usually obtained by taking a product of a

diagonal matrix DT of the sum for each column of GT and the top-k
eigenvectors WT obtained by EVD (i.e., Ycol

T = DT W>T ). However,
because ccMCA performs EVD on (BT −αBB) and the result is
influenced by XB as well, we cannot compute PCC in the above
manner. Instead, we use MCA’s translation formula from PCI to
PCC [30]. The translation from PCI to PCC can be performed with:

Ycol = D−1
T Z>T Yrow

T diag(λλλ )−1/2 (1)

where Yrow
T is PCI of a target matrix and λλλ is a vector of the top-k

eigenvalues. An example of the resultant PCC is shown in Fig. 5(3).
By referring to Fig. 5(2) and (3), the analyst can characterize a
selected cluster by understanding which categories are highly asso-
ciated with the uniqueness of the cluster.

4.5 Linking and Interactions
The visualizations across all six panels of the dashboard and tabular
view are fully linked, and support brushing and direct selection (of
a bin/cluster). Users can select, say, a cluster of interest in one of
the projected 2D views (A1, B1, or C1 in Fig. 2) and observe the
distribution of the cluster in the remaining two views. Each projected
view is supported by a cluster characterization view (A2, B2, and
C2 in Fig. 2). When a cluster is selected from one of the projected
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Figure 7: Characterizing a customized cluster (see Sect. 6-Cluster
Characterization). Dots in the cloud of categories that share similar lo-
cations to the colored dots in the cloud of individuals reveal equipment
types that contribute more to the separation of this cluster.

views, all three characterization views update to show the results
of that cluster’s characterization analysis based on categorical (A2),
text (B2), and numerical (C2) data dimensions. The tabular view
also updates to show the attributes of the data in the selected cluster.

The linked views update in a similar manner even if—instead of
selecting a cluster—the user selects, say, a single hexbin, or brushes
across multiple hexbins. Boolean operations such as the union,
intersection, and difference are also supported for more sophisticated
selections of data across the three projected views. For instance,
the user can intersect multiple clusters across different views to find
points common across clusters, or combine the clusters by the union.

Fig. 6 shows an example of interactive linking. The user selects
the cluster labeled “cold, room, poc” in panel 2 (projected view of
text). This highlights hexbins in the other two views that correspond
to this cluster. In the example shown, most of the data points overlap
with Cluster “room, poc, found” in panel 1 (categorical dimensions),
indicating a correlation between these two clusters. To better observe
the overlapping points, the user subtracts the two outliers in panel 1
by brushing them out, and checks the supplementary views. Panel 3
shows the points distributed across clusters, indicating no correlation
between the selected clusters along their numerical dimensions.

5 IMPLEMENTATION

The dashboard visualization is implemented as a web framework
with a Flask server at the back end. The separation of numerical,
categorical, and text dimensions is currently performed manually.
We compute dimensionality reduction and clustering at the back end
for each of these three groups of dimensions and visualize the results
by creating an interactive web-based dashboard application. We
use HTML/JavaScript for the front end using Bootstrap and React
libraries, and D3 [4] to create interactive visualizations.

We use the Scikit-Learn [38] machine learning library for most of
the dimensionality reduction and clustering algorithms, except for
UMAP and ccPCA, for which we use implementations by McInnes
et al. [36] and Fujiwara et al. [20] respectively. We use our own
implementations of MCA and ccMCA for DR and contrastive learn-
ing for categorical dimensions. For the text dimensions, we use
the Natural Language Toolkit (NLTK) [33] for the text processing,
ConceptNet Numberbatch [48] as the word embedding to vectorize
the text, and Gensim [41] to perform the word-vector lookup.

We tokenize the descriptive text and tags, and remove stop words.
Vector representations of words in the remaining text are retrieved

Numerical Data 
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Text Data 
Dimensions

1

Category Contribution View Detailed 
Tabular View

2

3 4

ACTLAB
HRS

SUPER
VISOR1 LONG_DESCRIPTION ACTLAB
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Selection corresponding to 
Cluster “proper, operation, 
check” of text dimension 
view overlaps with high 
labor hours & cost

Figure 8: Examining a subset of the original data characterized by
temperature-related complaints. The selected purple cluster is—using
the category contribution view (3)—shown to be related to high costs
associated with two supervisors (see Sect. 6).

using the word embedding, normalized, and added to obtain a single
vector representing the unstructured text component of each data
point. While ConceptNet Numberbatch contains a fairly large vocab-
ulary of over 500,000 words, there may be domain- or organization-
specific terms used in maintenance logs that are not present in the
word embedding. In our current implementation, we discard these
terms on the assumption that enough of the meaning is captured in
the rest of the text for clustering data. However, in future iterations,
we plan to update word embeddings using vocabulary from technical
manuals and organizational documentation.

6 USE CASE SCENARIO

We illustrate the use of our system using maintenance log data of
HVAC systems used in multiple office buildings of an organization.
We focus on tasks where the user would analyze the data for patterns
and trends to better allocate resources, assign technicians, and sched-
ule future work. Such tasks are an important part of the maintenance
cycle, as described in Brundage et al. [8]. The maintenance logs
consist of over 21,000 records collected over ten years and contain
multiple dimensions of categorical, text, and numerical data. For the
purpose of this use-case scenario, we select dimensions of the data
that have the least number of missing values. The dataset is grouped
by the following sets of dimensions.

The first group involves the categorical dimensions of (1) the
building number where a complaint on the HVAC system was
recorded, (2) equipment type of the HVAC subsystem or machine,
(3) work order priority, (4) system/complaint location (build-
ing number + floor + room), (5) the index of the supervisor in
charge of the systems at the time of logging the problem/solution.

Most of the numerical dimensions in the data involve dates and
times of logging and are not accurate or consistent enough to com-
pute meaningful timespans. The second group thus involves the
two remaining numerical dimensions of (1) actual labor hours
incurred, and (2) actual labor cost incurred.

The third group consists of the text dimensions of (1) long
description or a description of the problem or complaint that
needed addressing, (2) description or a small set of keywords
highlighting the important aspects of the problem, and (3) a set of
multiple tags assigned to each maintenance record. The text fields
were cleaned up to remove extraneous characters (e.g., HTML tags,
symbols, URLs, etc.), remove punctuation, normalize whitespace
sequences, and correct typographical and Unicode errors.

Our scenario involves Alice, a maintenance supervisor responsi-
ble for the smooth running of HVAC systems across the organization.
Alice uses our prototype to examine the dataset and identify patterns



in the logs to identify potential issues and plan preventive mainte-
nance. One of her initiatives has been to try and allocate manpower
for recurring or preventable maintenance problems.

Overview. Alice loads all three data groups discussed above
into the prototype to get an overview of the data after DR and clus-
tering. She looks over the default tags assigned to each cluster and
notices such commonly-occurring terms as “room”, “air”, “hot”,
and “cold”. The largest cluster in panel B1 (Fig. 2) showing text
dimensions appears to contain complaints related to room tempera-
ture, with the tags “too hot” and “too cold” being the most common.
From experience, she figures these represent the most typical com-
plaints about HVAC systems in offices. The top keywords in the
frequency plot (B2 in Fig. 2) confirm her hunch.

Looking over at the numerical data projection (C1 in Fig. 2),
Alice notices that it appears to be linearly correlated. Examining the
heatmap in the feature contribution panel (C2 in Fig. 2) confirms
this observation as she finds that the “actual labor hours” do indeed
correlate with “actual labor cost”. She makes a mental note to refer
to the correlation to filter the data by time or cost in her analysis.

Cluster Characterization. Apart from the clusters related to
the temperature problems, Alice notices a unique brown cluster in
the text dimension views tagged as “fan, alarm, fail” (B1 in Fig. 2)
and decides to take a closer look at it. From panel B2, she finds that
the top keywords in this cluster—fan, alarm, fail, reset, repair—are
significantly different from those in the rest of the dataset. She also
finds that the cluster overlaps with all clusters in the categorical view
(A1 in Fig. 2) that have the above three terms as one of their main
tags. The highest overlap in the categorical data view is with a cyan
cluster (see Fig. 7) tagged with “alarm”, “reset”, and “fan”.

She uses the Boolean operator to separate the intersection between
these two clusters. From the category contribution panel (Fig. 7), she
notices that several types of equipment including “RAF” (Return
Air Fan), “EF” (Exhaust Fan), “VSD” (Variable Speed Drive),

“CRU” (Customer Replaceable Unit), and “AHU” (Air Handling
Unit) contribute the most to this cluster. From her experience, she
knows that the above equipment has always had relatively unreliable
fans. Cross-checking with the numerical data panel, she realizes that
the labor cost is relatively low for these problems, so she makes a
note to have regular preventive maintenance done on the equipment.

Projection Interpretation. Now Alice decides to have the “too
hot/cold” issue looked into further, and calls in an engineer to fil-
ter the dataset by these two tags and examine this filtered dataset
separately. After loading the subset into the system, she notices a
symmetry in the layout pattern of the text dimension view, about
a horizontal axis. The clusters in the upper half of the projection
all contain the keyword “cold” while those on the lower half con-
tain “hot”. She infers that the vertical direction in the projected
space relates to temperature, and becomes interested in the clusters
located in the middle, especially the solitary purple cluster with tags

“proper, operation, verified” (Fig. 8-1). She notices a significant
variation of labor cost and hours in this cluster (Fig. 8-2). Selecting
all points with a higher labor cost and hours, she learns from the
updated keyword frequency plot that they correspond to the action

“replaced”. From the category contribution panel, she finds that this
part of the data is highly related to two supervisors “S1” and “S8”
(Fig. 8-3). She confirms this observation by checking the tabular
view (Fig. 8-4). She believes that the high cost may either a clerical
mistake or an issue with the vendor supplying the parts. She decides
to talk with these two supervisors to get to the bottom of the issue.

7 EXPERT REVIEW
Our prototype was reviewed by three experts in machine mainte-
nance analysis to determine its usefulness and throw light on the
kinds of patterns or insights it might reveal to domain practitioners.
The first expert (E1) was a data scientist from the industry who had
developed approaches for extracting actionable information from
maintenance data for over six years. The second expert (E2) was an

industrial engineer specializing in model-based systems engineering
methodologies. Finally, the third expert (E3) was a computer sci-
entist from academia who worked on algorithm development and
natural language processing for 25 years.

We conducted two pilot studies with co-authors of this work who
are also domain experts in maintenance log analysis. This helped us
simulate the remote setup and related logistics planned for the study,
determine needs for—and forms of—tutorials and examples, and
identify tasks that could be performed within existing constraints.
Based on these, we designed a semi-structured, open-ended expert
review. We followed the “pair analytics” paradigm [1] with one of
the authors as the experimenter and the participant as the subject
matter expert (SME). Pair analytics has been shown to be optimal
for open-ended studies with SMEs, since it stimulates dialogue
between the experimenter and the participant and explicates the
participant’s thought process, and reduces the burden of fluency with
the application from the SME who is usually not a visual analytics
expert [1]. The additional constraint of the pandemic, requiring a
remote setup, further informed the decision to employ this paradigm.

The study used a video conference setup where the experimenter
controlled the tool while the expert observed the visualizations and
suggested filters, queries, and interactions via screen sharing. The
experts perused a document explaining the views and functions of
the prototype prior to the study, and were shown a 20-minute tutorial
demonstrating the prototype at the start of the study. They were then
asked to explore two datasets (30 mins each), one the HVAC dataset
described in Sect. 6, and the other a subset of 17,000 records from
the HVAC dataset involving temperature-related complaints.

We categorize our observations on the domain experts’ remarks
during the exploratory tasks and their feedback on the prototype into
functionality of the prototype, visual encoding, and interaction.

Functionality. The tutorial and demonstration at the start of the
study involved use cases and observations such as the one presented
in Sect. 6. At the end of the demonstration, all three experts found
our workflow to be “highly reasonable” (E2) and found the cases
compelling. Yet, during the exploratory part of the study, they found
it difficult to pin down the questions they could ask and answer of the
data. For instance, E2 asked, “What key question am I to answer?”
Based on the experts’ questions about the visualizations, filters, and
interactions during the exploratory study, we infer that the difficulty
encountered by the experts was partly due to the relatively short time
they spent with the interface and their unfamiliarity with the data.

Visual Encoding. Domain experts found the linked views to be
intuitive and useful. E3 remarked, “I like the ways that the panels are
automatically updated with respect to the selections that (are) made.
And being able to see the three types of data all together is good.
Definitely a good idea to have them combined”. However, they
found it too abstract to separate the data dimensions into categorical,
numerical, and text. As E1 explained, “Looking at categorical, text
and numerical data makes sense from a data perspective, but it’s not
necessarily the functional break down that makes sense.” Instead,
they reported that they would have preferred a way of representing
the data that allowed them to see the problems in a functional
way, e.g., wherein the building, or wherein the machine a problem
occurred, or what temporal patterns were observable in the data. E1
and E3 also found it a little confusing that the default cluster labels
in the numerical and categorical panels still used keywords from the
text component of the data. On the other hand, while they were able
to characterize at least one of the clusters, none of them re-labeled
the cluster(s). All three experts also found the characterization view
for the categorical data difficult to understand. E1 said that they had

“a really hard time understanding this visualization”. E3 noted that
they had “never seen the information displayed in this way with two
side by side panels of the cloud of individuals and categories... it’s
a little non-specific as far as whether the dots that show up in the
(cloud of) categories are close enough to the dots in the (cloud of)
individuals and how relevant it is.”



Interactions. All three experts found the brushing and linking
to be highly useful, though the hexbin plots were a little confusing
for E1 and E2, who took a highlighted hexbin in one view to indicate
that all the points in that bin were linked to the cluster selected
in another view. E1 suggested providing “a measurement of how
much the correlation or lack of correlation is.” E3 initially found the
Boolean operations to be less intuitive, but after asking for and seeing
examples of how they were used, deemed the operations to be highly
useful. Finally, E3 suggested the addition of numerical filters using
which they could identify maintenance costs higher than a certain
threshold, while E2 suggested filtering out data associated with
commonly-occurring tags to help examine less-common problems.

Overall, the experts found the datatype-based separation less intu-
itive but considered the coordinated views and Boolean operations
across the views to be of value. They recommended more tangible
ways of grounding the data in the domain familiar to them by us-
ing locations of machines in buildings, locations of components in
machines, and filtering by cost, dates, and keywords.

8 DISCUSSION
The use case scenario and the expert review illustrate the importance
of interactive visual analysis in the maintenance workflow. For
instance, the overview visualizations were seen to provide useful
groupings for analysts to explore and interpret using their domain
knowledge. Additionally, the expert review illustrates the usefulness
of interaction and filtering in helping interpret unfamiliar visual
abstractions, and highlights a need to ground the representations in
a way that is familiar to the domain experts.

In the use case scenario, we saw how the overview visualiza-
tions can help identify common patterns across the dataset (e.g., the

“hot/cold” cluster) and help small but closely related clusters stand
out (e.g., maintenance of equipment involving fans). The ccMCA
views (Fig. 7) allowed the user to not only verify common traits—
such as the presence of unreliable fans, or replacements ordered
by a small subset of supervisors—across a problem group but also
identify which equipment (in the case of fans) and supervisors (in
the case of replacements) had the common traits.

The expert review highlighted both the advantages and disadvan-
tages of our approach. When the domain experts were demonstrated
scenarios, such as that described in Sect. 6, they were convinced and
impressed by the capability of the prototype. Their validation of the
workflow used to create the projected views and characterization
views (Fig. 1) also verified that our approach was well-motivated.
On the other hand, the experts found the data separation and visu-
alization too abstract to pick up in a single session. They preferred
a more tangible means of viewing the data, based on the location
of the machines, locations of the components in the machines, and
based on cost. However, representing high-dimensional data based
on only one or two characteristics may not reveal important insights.
In addition, one of the main advantages of our approach—its gener-
alizability to other domains—will be lost by grounding it too much
in one domain. However, there may be a middle ground wherein the
user is able to add an additional “custom” view based on familiar
data characteristics. We will explore this in future iterations.

In spite of the difficulty the experts faced with the abstract rep-
resentations, they found the coordination or linking across views
to be a useful feature that helped them understand the data better.
As with the representations, they did express a preference for more
tangible filters (e.g., based on specific cost ranges). However, at least
one expert (E3) had started to appreciate the sophisticated filtering
possible through the coordinated views and Boolean operations. The
expert feedback suggested that some of what they found difficult
about the interface was more due to the short duration of the sessions
rather than the data abstractions themselves. A longitudinal study—
though unrealistic at this time with restrictions on data sharing and
the current constraint of remote sessions—would help address some
of the familiarity issues that the domain experts currently face.

9 CONCLUSION
In this paper, we present a design that couples machine learning
with interactive visualization for analyzing large, heterogeneous,
multidimensional maintenance log data. A key approach is to sep-
arate numerical, categorical, and text dimensions of the data, and
use lower-dimensional, clustered views that reveal groups in the
dataset by each dimension type. We apply existing techniques such
as ccPCA and word embeddings with frequency plots to characterize
the dataset based on its numerical and text dimensions. Notably,
a unique capability is provided with our new contrastive learning
method, ccMCA, to characterize a dataset with its categorical di-
mensions. We present these approaches of clustering and characteri-
zation in the form of a dashboard with linked views, and illustrate
its utility through a use-case scenario and an expert review. These
scenarios allow us to highlight the use of ccMCA in identifying
categorical dimensions and their values that contribute to a cluster.
The expert review highlighted the usefulness of linked views to char-
acterize clusters across different dimension types. We also identify
the need for more grounded, domain-specific representations of data
to scaffold the experts’ understanding of the system.

NIST DISCLAIMER
The use of any products described in this paper does not imply rec-
ommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that products are necessarily the
best available for the purpose.

ACKNOWLEDGEMENT
We are grateful to the domain experts who volunteered with our
hour-long study during these challenging times. We also thank the
anonymous reviewers for their suggestions that helped improve this
paper. This research is sponsored in part by the financial assistance
award 70NANB20H197 from the U.S. Department of Commerce,
National Institute of Standards and Technology.

REFERENCES

[1] R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. Pair an-
alytics: Capturing reasoning processes in collaborative visual analytics.
In Proc. HICSS, pages 1–10. IEEE, 2011.

[2] A. Arleo, C. Tsigkanos, C. Jia, R. A. Leite, I. Murturi, et al. Sabrina:
Modeling and visualization of financial data over time with incremental
domain knowledge. In Proc. VIS, pages 51–55. IEEE, 2019.

[3] J. Bae, T. Helldin, M. Riveiro, S. Nowaczyk, M.-R. Bouguelia, and
G. Falkman. Interactive clustering: A comprehensive review. ACM
Computing Surveys, 53(1):1–39, 2020.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Trans. on Visualization and Computer Graphics, 17(12):2301–
2309, 2011.

[5] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing
dimensionally-reduced data: Interviews with analysts and a characteri-
zation of task sequences. In Proc. BELIV, pages 1–8, 2014.

[6] B. Broeksema, A. C. Telea, and T. Baudel. Visual analysis of
multi-dimensional categorical data sets. Computer Graphics Forum,
32(8):158–169, 2013.

[7] M. P. Brundage, K. Morris, T. Sexton, S. Moccozet, and M. Hoffman.
Developing maintenance key performance indicators from maintenance
work order data. In Proc. MSEC. ASME, 2018.

[8] M. P. Brundage, T. Sexton, M. Hodkiewicz, K. C. Morris, J. Arinez,
et al. Where do we start? guidance for technology implementation
in maintenance management for manufacturing. J. of Manufacturing
Science and Engineering, 141(9):091005, 2019.

[9] M. Cammarano, X. Dong, B. Chan, J. Klingner, J. Talbot, et al. Vi-
sualization of heterogeneous data. IEEE Trans. on Visualization and
Computer Graphics, 13(6):1200–1207, 2007.

[10] D. B. Carr, R. J. Littlefield, W. Nicholson, and J. Littlefield. Scatterplot
matrix techniques for large N. J. of the American Statistical Association,
82(398):424–436, 1987.

[11] T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto,
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