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components are changed, result in ideas that are very different from the
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6.6 Extending or customizing a timeline visualization to fit custom time-series
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ABSTRACT

Chandrasegaran, R. Senthil K. Ph.D., Purdue University, May 2016. Tools and Meth-
ods to Analyze Multimodal Data in Collaborative Design Ideation. Major Professor:
Karthik Ramani, School of Mechanical Engineering.

Collaborative design ideation is typically characterized by informal acts of sketch-

ing, annotation, and discussion. Designers have always used the pencil-and-paper

medium for this activity, partly because of the flexibility of the medium, and partly

because the ambiguous and ill-defined nature of conceptual design cannot easily be

supported by computers. However, recent computational tools for conceptual de-

sign have leveraged the availability of hand-held computing devices for creating and

sharing ideas. In order to provide computer support for collaborative ideation in a

way that augments traditional media rather than imitates it, it is necessary to study

the affordances made available by digital media for this process, and to study de-

signers’ cognitive and collaborative processes when using such media. In this thesis,

we present tools and methods to help make sense of unstructured verbal and sketch

data generated during collaborative design, with a view to better understand these

collaborative and cognitive processes. This thesis has three main contributions.

We first present use text visualization techniques to analyze verbal data generated

during and about a brainstorming session, and use concept maps and lexical dispersion

plots to provide an overview of the design process through these representations. We

also use concordance views to disambiguate concepts of interest.

Secondly, we identify requirements for a digital framework that supports collab-

orative sketching in early design, and use skWiki, a framework designed with these

requirements in mind, to understand the physical and cognitive processes involved in

using such a framework. We identify the value of group awareness—to both the design

team and the design researcher—afforded by skWiki’s representation of collaborative
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sketching in the form of “paths” of sketches. We identify, through skWiki’s branching

operation the associated cognitive processes of lateral and vertical transformations

that the former involves. We also propose the cognitive processes of reuse, refactor,

repurpose, and reinterpret associated with skWiki’s merging operation.

Finally, we present a web-based visual analytics platform called VizScribe that

supports the representation of the design process through the traditional medium of

video and transcript, augmented by the text visualization and “paths” representation

discussed earlier. We introduce interaction paradigms that help researchers query,

filter, and code such data to make sense of collaborative design activity. We illustrate

the extensibility of this framework to represent other temporal data forms, and to

support collaborative coding.
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1. INTRODUCTION

1.1 Motivation and Overview

Product design and development are global ventures that require distributed teams

of designers and engineers to work together [1, 2]. This has required designers to use

digital tools and media, in order to express and communicate their ideas quickly and

efficiently with stakeholders located across the world. Product design can be divided

into five stages: requirements modeling, functional modeling, concept design, embodi-

ment design, and detailed design [3]. Until recently, these tools have largely supported

the later stages, especially detailed design. This is perhaps due to the fact that at

this stage, the information pertaining to the product is well-defined and amenable

to the kind of unambiguous, formal representations that can be supported digitally.

This is true for most computer-supported collaboration tools, whether for socially

constructed knowledge bases such as Wikipedia, collaborative text editors such as

Google Docs, or in our case, computer-Aided design (CAD) tools such as PTC Creo

and product lifecycle management (PLM) systems such as Enovia. These processes

where the goal is selection, refinement and detail, and the result is a single product,

whether a web page or a car, are termed analytical or “convergent” processes [4].

However, recent computational tools for conceptual design have leveraged the

availability of hand-held computing devices and web-based collaborative platforms,

thus providing a means to emulate the informal, messy, creative stages in design.

These creative stages come under the category of “divergent” processes [4], where the

goal is to generate alternatives and explore possibilities without the need to refine

ideas. Part of the challenge in supporting divergent processes lies in the nature of

creativity itself: a process of continuous inspiration, guesswork, and evaluation results

in a stream of ideas, only some of which are developed further.
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1.1.1 Design as a Creative Process

Design problems arise in a wide variety of domains, ranging from architectural

design, to mechanical design, to web design. They also vary in complexity, from

designing a doorstop to designing an aircraft wing, and in the tools required, from

pencil and paper to mathematical modeling software. The design process, however,

retains a degree of sameness across domains and applications. Ulrich [5] provides a

generalization for this process, characterizing it through four information processing

steps: perceiving a gap between what is and what can be, defining the problem of

why this gap exists, exploring alternatives to help bridge this gap, and evaluating and

selecting an appropriate plan to refine it. This notion of looking at design through the

lens of information processing helps us understand why Rittel and Weber [6, p. 161]

consider design a wicked problem: “the information needed to understand the problem

depends upon one’s idea for solving it”. This means that the information required to

solve the problem is unclear, incomplete, or undefined, and the designer has to rely

on their knowledge, experience, and insight to make sense of the information.

This “sensemaking”—the act of integrating one’s experiences into an understand-

ing of one’s surroundings—is a process of abductive reasoning, involving leaps of logic

based on ambiguous information, seeking the best explanation given this information,

and refining it in the light of new information [7]. A designer’s creativity is thus linked

to three main attributes: a comfort with ambiguity, the ability to change constraints,

and the ability to form new, often tenuous connections. These connections are either

broken or strengthened by new knowledge that is gained through the act of designing,

which in turn provides further insight to solve this and other design problems.

1.1.2 Challenges to Computer Support for Creative Design

Owen and Horváth [8] classify representations of the designer’s knowledge into

pictorial, symbolic, linguistic, virtual, and algorithmic forms, all of which are seen

through various stages in the design process (Figure 1.1). We can see that early design
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Figure 1.1. The various forms of representation through the de-
sign process, categorized based on Owen and Horváth’s [8] classifica-
tion. The stages in the design process shown on top follow Pahl and
Beitz [3]. While the list of representations and their classification is
more illustrative than exhaustive, we can see that early design chiefly
involves linguistic and pictorial forms, while the more formal repre-
sentations emerge as one moves towards detailed design. Computer
support for knowledge representation, essential for the designer’s in-
sight, is currently skewed towards the later design stages.

is characterized chiefly by linguistic and pictorial representations (informal sketch and

verbal data), while symbolic, virtual, and algorithmic representations (manufactur-

ing drawings, simulations, life-cycle analyses) emerge as the problem space is better

defined. A closer look at the list of representations under “detailed design” in Fig-
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ure 1.1 reveals that every one of these representations is done today on the computer.

This is not true of the preceding stages: as we move earlier in the design process, the

computer support drops off. This is chiefly owing to the nature design itself: early

design is characterized by exploration and ambiguity, while detailed design requires

refinement and unambiguous communication between stakeholders.

Regardless of the sophistication of computer support tools, conceptual design has

largely remained the same: collecting information, sketching, modifying, and iterat-

ing. Of these, sketching is of special interest, having universally been acknowledged

as “the archetypal activity of design” [9, p. 97]. While it is prevalent throughout the

design process, it is more dominant in the early conceptual design stages. Sketching is

not just a method for documentation and communication, it is also a tool for think-

ing: the act of sketching provides a memory extension, a visual representation, as

well as a baseline for abstraction to the designer [10]. These sketches and other visual

representations provide a medium for negotiations and discussions, thus supporting

the social and communicative processes in design [11].

The paper notebook, used for jotting down ideas and sketching concepts, is ide-

ally suited to the informal nature of early design sketches [12]. Providing digital

support for sketching has gained momentum recently owing to the recent develop-

ments in direct-touch tablets and active pens. However, we must keep in mind that

computer support tools for ideation should augment instead of imitate [13]: to use

the computational and interactive power to augment traditional design methods and

tools, rather than imitate them. While the strengths of a digital medium, such as

replication, composition, and persistent storage are understood, there remain unan-

swered questions about what more such digital media can afford teams of designers as

well as researchers who study design. Collaboration adds another level of complexity

to concept generation and progressive development: an effective communication and

iteration mechanism is necessary to effectively utilize ideas generated by individual

team members. Digital tools can render sketches persistent through storage, while

at the same time make them mutable by enabling replication and editing. However,
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developing such a tool needs to go hand-in-hand with observing how it is used, and

understanding the potential impact of such tools on the designer’s cognitive process.

1.1.3 Understanding Collaboration in Early Design

From a design researcher’s point of view, understanding how designers think, com-

municate, and collaborate has typically fallen under the larger umbrella of protocol

studies. The act of making connections between numerous and seemingly unrelated

pieces of information is one that occurs in the designer’s mind, invisible to the observer

except for glimpses offered through artifacts such as the designer’s notes and sketches.

This poses a challenge to design researchers, who need to understand what goes on in

a designer’s mind when they are engaged in the design activity. Think-aloud protocol

studies [14] are commonly practiced in such situations, where the designer is asked

to continuously verbalize their thoughts during a design exercise.

While this works to an extent on individual design tasks, it does not work when

studying how designers work together. In such situations, the researcher is forced to

rely on sketches and records of verbal communication within a design team as the

only forms of data. This involves recording the design session on video and audio, col-

lecting their sketches and notes, and then transcribing, segmenting, and coding this

data [15]. Recent developments in computational social science has brought in the use

of sensors such as sociometric sensors [16], eye-tracking sensors, and psychophysiolog-

ical measurement devices such as encephalographs and galvanic skin sensors. Today’s

design researcher needs to leverage the use of these sensors, as well as the data they

are now able to collect through the aforementioned digital tools that support design

ideation and collaboration. While there now exist computer-aided qualitative data

analysis software (CAQDAS) for supporting protocol analysis, these tools do not sup-

port a meaningful representation of the multimodal data collected by researchers, nor

do they give the researcher the freedom to create their own representations to suit

their specific needs.
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1.2 Organization and Contributions

This thesis presents tools and methods that help make sense of unstructured verbal

and sketch data that are generated during collaborative design ideation, in order to

better understand early design. Chapter 2 provides a background on existing visual

representations of text data, existing computer support for sketching and early design,

and existing tools and techniques to aid design protocol studies. The subsequent

chapters detail the following contributions:

1.2.1 Text Visualization to Understand Collaborative Ideation

As mentioned previously, conceptual design is characterized by informal and am-

biguous representations, chiefly sketches and verbal data. Chapter 3 discusses in de-

tail how text visualization techniques such as concept maps, lexical dispersion plots,

and text concordances can be used to represent this verbal data in order to provide

overview and detailed representations of collaborative ideation. In this chapter, the

verbal data generated as a result of team brainstorming exercises are categorized

under transcribed speech, sketch annotations, and reports reflecting on the process

followed and on the final design. These relatively unstructured datasets are then

visualized using the mentioned techniques to show how the processes followed by two

different sets of teams can be identified.

1.2.2 Cognitive Models to Understand Collaborative Sketching

Based on challenges faced by computer-supported collaboration in early design

identified through literature review and preliminary studies chapter, we attempt to

better understand the cognitive processes involved when designers use such a plat-

form. Chapter 4 outlines design requirements to better support collaborative ideation,

and use a web-based collaborative sketching platform called skWiki to create “branch-
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ing” and “merging” operations that help designers to view, adapt, and modify each

other’s sketches to better explore the design space.

This chapter also uses Goel’s [17] theory of transformations to understand the

cognitive processes behind skWiki’s “branch” operation. The chapter discusses how

skWiki aids the sketching-related cognitive operations of lateral and vertical trans-

formations, and how skWiki’s representation design activity as a series of “paths”

provides designers with an easily accessible representation of their design history.

The “paths” model also provides design researchers with a means to observe team

activity over longer durations when there is no means to record the team.

The “merge” operation afforded by skWiki is discussed in detail in Chapter 5. Here

we identify the different cognitive operations involved in exploring the design space

by merging existing sketches. We propose four operations, namely reuse, refactor,

repurpose, and re-interpret, that aid the transformation of existing ideas into related

or new ideas. We show how computer-supported collaborative sketching platforms

can support these four operations to aid divergent thinking and delay fixation.

1.2.3 Understanding Design Team Behavior Using Visual Analytics

In order to better understand collaborative ideation, it is necessary for the design

researcher to make sense of the informal verbal and sketch data generated during this

activity. The preceding chapters discuss cognitive operations and representations of

sketching and verbal behavior that can aid the researcher. Chapter 6 details how

we use these representations along with traditional protocol analysis data such as

video and transcript, presenting a web-based, extensible framework called VizScribe

to analyze design activity. VizScribe uses an orient-focus-code interaction paradigm

that helps the researcher orient themselves to the represented datasets, focus on

specific data points to understand context, and code the data to gain further insights.

We show the extensibility of this framework by integrating time-series data from

sociometric sensors worn by a design team, and illustrate how such a representation
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provides context and meaning to the design researcher. We also illustrate how the

web-based framework can be used by multiple researchers to collaboratively code the

same dataset, opening up possibilities for more reliable coding processes.

Finally in Chapter 7, we outline the conclusions of this work and its implications

to the computer support and analysis of conceptual design, discuss limitations of the

proposed tools and methods, and propose future research directions.
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2. BACKGROUND

In order to understand the needs for and challenges in analyzing collaborative ideation,

we must first gain an understanding of the processes involved, the challenges in pro-

viding computational support for these processes, and the opportunities provided by

such computational support. This chapter thus provides an overview of approaches to

collaborative ideation, and the importance of sketching in conceptual design. It then

gives a brief overview of prior and existing work to support sketching and collabora-

tive conceptual design. Finally, the chapter ends with a detailed discussion of existing

methods, challenges, and opportunities in analyzing such computer-supported collab-

orative design activities.

2.1 Approaches to Collaborative Ideation

Most practical design work happens in teams consisting of multiple participants,

often with different and complementary expertise [18, 19]. In such collaborative set-

tings, externalizing the intermediate results of the creative process becomes partic-

ularly important so as to allow collaborators to be inspired by the work of each

other [2]. Design exploration techniques such as mind-maps and SCAMPER [20] fo-

cus on forming connections between existing ideas, or on augmenting or modifying

these ideas to generate new ones.

Brainstorming [21] is perhaps the most popular and extensively studied collab-

orative ideation technique. Other methods for group ideation include the Method

635 [22] and brain writing [23]. Designers use a combination of sketches and actions

to communicate with each other [24]. Thus, graphical methods such as the Gallery

method [25], brainsketching [26], and the more recent C-sketch [27] have also gained

popularity. Evaluations of such techniques have yielded mixed results: studies on
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brainstorming have shown that a higher number of ideas would lead to a higher qual-

ity of ideas, while others have observed that brainstorming groups end up with ideas

that are lower in quantity and quality compared to those of individuals [1].

Collaborative design is progressive: it is as much about developing designs and

alternatives as it is about expanding the problem space using concept generation

methods. Resolving and combining ideas, concepts, and content from multiple de-

signers is a canonical operation in any collaborative process involving the creation

of new artifacts, such as documents, plans, or drawings [28, 29]. Blair and Hölttä-

Otto [30] studied progressive idea generation methods such as 6-3-5 Brainwriting,

and report that while the contribution to highly original initial ideas is not high, the

group significantly increases the originality of previously unoriginal ideas. Each of

these methods has its own strengths, and group ideation sessions often use a combi-

nation of these methods, or switch from one to another as the situation demands.

Put differently, the ongoing creative output of the design team is key in driving

new creative output, which is one of the factors driving the development for computer

support for collaborative ideation. Specifically, the focus lies on tools that combine

the ease of sketching ideas on paper with the power of networked computers for

sharing and iterating over these ideas.

2.2 A Brief Note on Sketching

Sketches play an important role in externalizing ideas during early design by pro-

viding a visual database of generated ideas that inspires new ones [31]. In fact,

sketches in particular have been shown to be more effective than any other medium,

including text and cross-representational techniques, for the early phases of ideation

and creativity [32]. Designers have been observed to perform different levels of ’shape

transformation’ when sketching. These transformations can be categorized into gen-

eral rules with which to interpret the changes that occur to a sketch [33]. A key
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insight here is the role that sketches play in informing the design process, both for

building on existing ideas as well as exploring new parts of the solution space.

Pen and paper has long been the gold standard for sketching [9, 10], but the

emergence of high-quality pen-input devices is starting to make the digital medium

more attractive in a wide range of domains, including automotive design [34], archi-

tecture [35], and software design [36]. Yang [37] reviewed concept generation and

sketching among student designers, reporting that the quality of the design outcome

is positively correlated with the number of dimensioned sketches in the design note-

book, and makes an argument for electronic design notebooks aiding collaborative

conceptual design. Several studies have explored how to replicate the strengths of

paper—familiarity, precision, and accessibility—even on digital devices [38, 39] to

harness their strengths of persistence, replication, and composition.

2.3 Computer Support for Collaborative Conceptual Design

Requirements of computer support tools for supporting conceptual design have

been articulated by many. These include enabling easy entry of geometric, numeric,

and text data, capturing ambiguity of early concepts with imprecise dimensions, al-

lowing separate representations for conceptual designs (sketches) and detailed designs

(CAD models), allowing selective development of details, and enabling easy reviewing

of alternatives [40]. Early work in collaborative creative support for design was in the

form of multi-user drawing support [41–43] for collaboration between geographically

distributed participants. Wang et al. [44] review collaborative conceptual design tools,

and report that most tools support the later part of conceptual design. They iden-

tify key challenges in the field, including but not limited to web-based collaborative

conceptual design, tools for managing conflict resolution, knowledge management in

collaborative environments, distributed design project management, and intelligent

web-based interfaces. They observe that there were few tools that support early

stages of conceptual design such as brainstorming and sketching.
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Dorta [13] developed a Hybrid Ideation Space (HIS) which uses a spherical mirror

model to provide an immersive virtual reality environment that incorporates a digital

sketching interface as well as a 3D scanner for 2D and 3D exploration and manipu-

lation of ideas. Clayphan et al. [45] devised a tabletop interface called “Firestorm”

for text-based brainstorming, with a view to faster idea generation, high visibility

of ideas, and easy selection and arrangement of ideas. Participants use keyboards

to generate brief descriptions of ideas, without figures, and collaboratively use a

tabletop interface for arranging and selecting ideas, which are color-coded to each

participant. Support for multi-user sketching support was pioneered by the i-LAND

environment [46] that uses personal sketching interfaces as well as collaborative dis-

play walls. TEAMSTORM [47] and GAMBIT [48] allow sketching on mobile devices,

coupled with a large display for sharing and manipulating sketches. IdeaVis [49] rec-

ognizes the designer’s preference for sketching on paper, and uses cameras and pro-

jectors to integrate paper into a collaborative environment that uses hybrid media.

GAMBIT [48] is a web-based system for sketching user interfaces in co-located col-

laboration involving multiple devices and displays. Most of these systems require the

use of an environment specifically designed for the purpose, and thus pose challenges

in the context of design teams, especially student design teams, that are unstructured

and mobile. Finger et al.’s Kiva Web [50], a system for group collaboration, circum-

vents this limitation by requiring web-enabled computers and a projector, available

in most generic meeting rooms.

Naturally, there exists groupware that focus on the shared creation of other

types of artifacts beyond sketches. Collaborative editors such as Google Docs and

ShareLatex support concurrent editing, often using a form of operation transform

(OT) [51, 52]. Chronicle [53] clusters, probes, and visualizes a document’s workflow

history, whereas MeshFlow [54] visualizes, clusters, annotates, and filters the history

of operations on polygonal meshes. Finally, dating back to early offerings such as the

Source Code Control System (SCCS) [55], version control systems manage content

change and maintain a history of its evolution, and are now commonplace in the
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software industry, e.g., git, SVN, and CVS. The recent Diffamation [56] method uses

animation and color encoding to help developers understand the work done by other

team members in such version control systems. While digital creativity platforms

offer means to generate different alternatives to existing sketches, and groupware

provides means to keep track of collaborative workflow history, there needs to be a

better understanding of the various physical and cognitive processes that are involved

collaborative conceptual design.

2.4 Analyzing Design Processes

Recent studies on design cognition has drawn significant attention towards the

design processes and on how knowledge and understanding of the designer is affected

by design processes and interaction among teams. In this section we discuss existing

tools for protocol studies. We then motivate the need for two kinds of visualiza-

tion techniques for such studies: event-based representations for temporal analysis,

and text visualizations for inferring patterns in the structure and semantics of the

transcribed text.

2.4.1 Methods to Analyze Design Processes

Stempfle and Badke-Schaub [57] propose a generic model of design activity in

teams based on the four basic operations of generation, exploration, comparison and

selection, and apply it in their study of design teams. They report that traditional

focus of design methodology needs to focus not only on the solution concept, but

also on the time and cognitive effort to generate the solution. Mumford et al. [58]

in their extensive review of methods in creativity research posit that creativity is “a

product of work on a particular type of problem” which is: (1) ill-defined, (2) novel,

(3) demanding, (4) complex, and (5) exploitable. They recommend that studies of

creativity and innovation require a multi-method, multi-measure approach. Gero et

al. [59] through their protocol studies on engineering students following three concept
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generation techniques of brainstorming, morphological analysis and TRIZ conclude

that using structured methods tend to help students focus better on the structure of a

solution. Jin and Chuslip [60] focus on the issue of “mental iteration” in engineering

design, defined as “a goal-directed problem solving process”, modeled as a “sequence

of transition behaviors between information processing and decision-making”. They

studied the process of iterative thinking in designers and identify three distinctive

“global iteration loops”: problem definition loop, idea stimulation loop, and concept

reuse loops. They further conclude that “creative design involves more iterations than

routine design”. This idea of iteration promoting more creative thinking has been

empirically suggested, one could argue that this explains the design expert’s emphasis

on early design having alternating cycles of divergence and convergence.

2.4.2 Existing Tools for Protocol Studies

Early work on computational support for protocol studies included artificial intel-

ligence based systems such as PAS-II [61], which incorporated linguistic processing on

task verbalizations to generate graph representations of human knowledge, and KRI-

TON [62], a knowledge-extraction system that infers knowledge elements and forms

relations using propositional calculus. Other approaches to support such studies used

generic software such as AQUAD [63] and SHAPA [64] for collecting and organizing

gathered data and metadata, along with annotations.

Commercial tools for qualitative analysis include multimedia processing tools such

as ATLAS.ti1 and NVivo2. These allow visualization and annotation of video time-

lines as well as of transcribed text, preserving associations between the two. The

Computational Analysis Toolkit [65] extends ATLAS.ti to a web-based framework

while increasing coding flexibility and speed. StudioCode3 is another popular tool for

video and transcript analysis. Other tools, such as LINKOgrapher [66] are developed

1http://www.altasti.com
2http://http://www.qsrinternational.com/
3http://www.studiocodegroup.com
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for more downstream applications: analysis of codes using a predefined ontology in

the context of conceptual design. However, these tools cannot provide simultaneous

views of multimodal data, nor can they adapt to diverse and evolving forms of data

that protocol studies are beginning to entail. VizScribe allows the integration of such

data, allowing a synchronized view of all recorded events accompanying the main

audio/video and transcript, thus providing context to the user.

Additionally, while each of these tools has their specific advantages and disadvan-

tages, there are issues such as forced workflows (imposing a specific style and sequence

in coding), coding fetishism (using coding irrespective of whether or not it is appro-

priate), distancing the user from data, or, at the other end of the spectrum, difficulty

in conceptual abstraction [67]. Complete automation of the coding process is another

challenge. For example, automated coding tools need better approximations of lin-

guistic features inherent to coding schemes [68]. While it is unclear as to whether a

VA-based approach will mitigate some of these issues, a combination of visual repre-

sentation and computational analysis would serve to augment the pattern-recognizing

strengths of the human user and the data processing power of the computer.

2.4.3 Visualizing Event-Based Data

Analysis of data collected from protocol studies involves a temporal component,

with a view to identifying and annotating co-occurring events. We restrict this section

to related work in timeline visualizations of categorical data, which is more relevant

to protocol studies than numerical data.

Lifelines [69] is a general representation of biographical data, visualizing discrete

events and relationships, and allowing focus on specific parts on the timeline in-

formation. Wang et al. [70] use timeline-based interactive visualizations to align

events in patient medical records in order to identify co-occurrences of other related

events. Challenges in interacting with such representations are illustrated by Monroe

et al. [71], who develop a visual query mechanism for these events.
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CyberForensic Timelab [72] uses timeline displays for establishing history in cy-

berspace. It displays a timeline view of electronic records of personal, time-stamped

events, to provide the investigator with a visual history of events. PortVis [73] uses

an overview and detail-on-demand approach to display activity on a large set of TCP

ports in a network over time, identifying traffic anomalies that signify possible attacks

on the network.

Stab et al. [74] use timeline views for more general applications: they develop

SemaTime, a temporal visualization tool that allows hierarchical categorization and

filter of domain-specific data. It also incorporates semantic relationships between

entities, similar to Continuum [75], which also provides histogram overview and time-

line detail view of temporal events. Temporal relationships are represented as spans

of bounding boxes, providing a visually pre-attentive visualization, with the level of

detail controlled using a “dimension filter”. Rubin et al. [76] present a set of tools for

Navigation and editing between speech and transcript for high-level editing of inter-

views to create “audio stories”. These tools, though not meant for protocol studies,

use methods that are both relevant and useful for future iterations of VizScribe.

More relevant to our work are the Digital Replay System [77], an ethnographic tool

that uses an ontology-based data representation for multimodal data analysis, and

Chronoviz [78], a timeline-based annotation and visualization of multimedia data that

uses timestamps to display video or audio data with related timeline data. VizScribe

differs from these tools in two main ways: (a) it links multiple visualizations using

Infovis techniques, and (b) it allows for extensibility of the timeline views to accom-

modate custom datasets, catering to changing data-acquisition technologies.

2.4.4 Text Visualization

Protocol analysis almost always include transcribed text as a main data format.

These are thus uniquely suited for a combination of text visualization linked to as-

sociated timeline visualizations discussed earlier. Previous tools for in-situ studies
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have used computational linguistics to draw inferences. However, there is no panacea

for cross-domain linguistic analysis. Polysemy and sentence parsing issues make a

completely automated text analysis tool a considerable challenge.

Developments in visualization techniques have opened up another dimension in

text analysis: visualizing text data. Basic text visualizations include frequency-based

word clouds such as Wordle4, keyword in context representations [79], and lexical

dispersion plots [80]. More sophisticated visualizations involve a degree of aggregate

representation, or representation of metadata. The Word Tree [81] is an example

of the former, with its aggregation of concordant terms to form a ‘tree’ of words or

phrases, scaled by occurrence. Parallel Tag Clouds [82] is an example of the latter,

with tag clouds in the form of parallel axes to show relationships between documents.

Representations for document content overview include Arc Diagrams [83], which

represent document structure visually, or in semantic form as in Docuburst [84]. Such

semantic bird’s-eye visualizations work well when combined with the more detailed

keyword visualizations for an effective combination of overview and detail.

4http://www.wordle.net
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3. UNDERSTANDING BRAINSTORMING THROUGH TEXT VISUALIZATION

The balance between creative thinking and analytical thinking in design has been

emphasized by many [9, 85, 86]. Over the last thirty years, several methods have

been proposed that enable designers to achieve this balance, the most famous being

Pugh’s method of controlled convergence [4]. An early graphical model to this end

was provided by Laseau [87, p. 91], who illustrated his model as a combination of two

funnels, an expanding funnel of elaboration or “opportunity-seeking”, and a contract-

ing funnel of reduction or “decision-making”. Recent years have seen developments

in the study of cognitive aspects of the design process from the point of view of design

education. Content analysis and protocol analysis have become widely-used methods

in such studies. Studying the effects of design processes in an educational setting

has two advantages: the larger body of student designers improves the robustness

and repeatability of a study, and the results of the study could potentially have a

more direct impact on design education. However, the large volume of textual data

generated in such studies makes it a challenge to identifying critical information.

Automated content analysis software tools have significantly aided in the study

of design processes in the recent past. However, they suffer from the lack of domain

knowledge and insight that a human expert can provide. In this chapter, we report on

the use of text visualization techniques that help in gaining insights and identifying

relevant patterns from the results obtained through a content analysis software. We

motivate our approach with the observation that examining overall patterns in data

aids us significantly in identifying interesting and relevant details concerning specific

contexts in the data. We use the proposed approach to study the effect of adopt-

ing Laseau’s “design funnel” of alternating divergent and convergent design processes

among student teams in a toy design course, and compare it to student teams that

follow a free brainstorming process. We demonstrate the application of lexical dis-



19

persion plots and text concordances as a means to further examine the output of a

conventional content analysis tool, and use these techniques to separate patterns from

anomalies. We identify cases of concept consistency across teams using the dispersion

plots, and identify cases of multiple word senses through text concordances. Finally,

we present insights that were obtained through these visualizations and propose con-

texts for further studies of the data.

3.1 Comparing Brainstorming Strategies: An In-Class Study

Our study was conducted in the context of a toy design course offered as a senior

elective to undergraduate engineering students. The course includes lectures that all

students attend at the same time, and lab sessions, where the class is split into two

batches. This batch assignment is based on a first-come, first-served basis at the

time of enrollment. We used this division of batches for our between-groups study.

The course includes a team project to design, model, and prototype an action toy.

Students are split into teams of 4 for the project, for which we performed a ran-

dom assignment to reduce the chances of performance outliers. Before they begin

this project, the students are taught idea generation techniques like SCAMPER and

“combining things” [88, p. 72, 332], trained on sketching as a way of visual think-

ing [89], and given an understanding of play value [90]. Equipped with these tools

and techniques, the students are expected to start their project with a brainstorming

session. We conducted this brainstorming session under a controlled environment in

a classroom, where we gave one batch guidelines for “free” brainstorming, and guide-

lines for an alternating divergent-convergent brainstorming to the other. We then

recorded the team discussions and the concepts generated in the session.
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3.1.1 Participants

We recruited 70 participants (68 male, 2 female), who formed the entirety of

the mentioned toy design course. All participants were undergraduate engineering

students in their senior year.

3.1.2 Experiment Design

We used a lab session to conduct the brainstorming, so we could perform a

between-groups study, with the groups comprising of the two lab batches. By con-

ducting both sessions with a space of only ten minutes between them, we reduced the

possibility of one batch influencing the other. We conducted the session in a room

where the seating arrangement was modified to allow students in each team to sit fac-

ing their teammates, and each team was provided with a tack board for putting up

their sketches or notes for discussion. Teams brought their own sketching instruments,

and were provided with sheets of paper marked with their team numbers.

3.1.3 Tasks

We gave both batches the same problem statement: “Design a toy that exhibits

a creative, non-trivial motion”. Both batches had the same required outcome: a

perspective sketch of their final concept, with annotations and notes describing the

toy and the target customer, and added sketches of the concept’s salient features. We

gave both batches 90 minutes to brainstorm and arrive at this final concept. Each

team was then provided with different procedures to follow:

Batch 1 teams were provided with sheets of paper marked with their correspond-

ing team numbers, and were allowed to brainstorm with relative freedom. They were

asked to generate (and sketch) multiple ideas and put them up on their board. They

were then to discuss and develop the ideas, shortlisting the promising ones and finally

select one concept and develop it to detail.
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Batch 2 teams were provided with two kinds of sheets of paper: sheets marked

with red dots, and sheets marked with blue dots. All sheets of paper were marked

with the corresponding team numbers. The batch was told to follow a two cycles of

alternating divergent and convergent brainstorming. They were given a slightly differ-

ent directive: to brainstorm and generate concepts (10 more more was the preferred

number) on the sheets marked with red dots, and, like Batch 1, put them up on their

board. They then had to discuss and select the most promising ideas (less than 10),

and mark them accordingly. They then were required to brainstorm further on these

ideas, and use the concept of “crossing products” to take features from the selected

ideas and develop them into more concepts. This round of concepts were sketched

on the sheets with blue dots to distinguish them from the earlier ones. Finally, they

were to select the concept that held the most promise.

After the session, all the teams were given three days to prepare a report that

reflected on the process they followed and the product that they developed. This was

to include the process they followed to generate ideas, how they balanced quantity

and quality, and the rationale they used to select ideas that they found promising.

They were also asked to include their feedback on the process they followed, and

then discuss aspects that they found effective and those they found ineffective. The

product section of the report was to include the number of initial concepts generated,

a description of the final concept, its play value, and its features that customers

would value. In addition, the teams were also to identify the underdeveloped features

of their concept and explain what they would do to improve them. Finally, they were

asked to list other concepts that they had liked, but had discarded in favor of their

selected concept, and explain why.

3.1.4 Data Collection

Our intent was to study three main aspects of the brainstorming process, namely

(1) concept discussion, which focuses on the conversations that occur within teams
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during brainstorming, (2) concept representation, which focuses on the sketches and

annotations that the teams generate during the session, and (3) concept reflection,

which focuses on what the students think in retrospect about both the session and

their concept. To this end, we made three corresponding categories of data:

• Concept Discussion: We recorded the brainstorming discussions of each team

on individual audio recorders placed on their desks. Each individual audio

recording was then transcribed, into text documents. A total of 41690 words

were obtained as conversation records from the Free batch, and 40170 words

from the D-C batch. In addition, two teams from each batch were arbitrarily

chosen for video recording as well.

• Concept Representation: We collected and scanned all the sketches made

by the teams, and further transcribed all sketch annotations into a text file for

every team. A total of 1580 words were recorded as sketch annotations from

the Free batch, while the D-C batch used 1470 words in total.

• Concept Reflection: We collected soft copies of the reports the teams pre-

pared on their process and their product.

We tagged all the above information with the corresponding team names. Data

from teams in batch 1 (free) were then combined to one text corpus each for concept

discussion, concept representation, and concept reflection. A similar process was

carried out for data from teams in batch 2 (D-C) as well.

3.1.5 Analysis

We subjected the text corpora from concept discussion and concept reflection

to a (textual) conceptual analysis, is based on the frequency of certain word co-

occurrences, and a relational analysis, based on relationship between these textual

concepts in the structure of the text. We adopted a visualization pipeline as shown

in Figure 3.1 that consisted of three main representations:
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Team 1 Team 2 Team N 

Concept Count % Relevance

ideas 168 100

concept 117 70

toy 114 68

team 71 42

generation 61 36

design 52 31

process 48 29

play 41 24

developed 39 23

final 35 21

features 31 18

value 26 15

motion 26 15

different 26 15

group 24 14

user 24 14

session 22 13

time 22 13

brainstorming 21 12

initial 20 12

able 20 12

effective 19 11

quantity 17 10

quality 17 10

ball 16 10

aspect 15 9

order 14 8

fantasy 13 8

started 12 7

children 11 7

Batch 1 - Free Brainstorming

………………
………………
………………
………………
…… 

Transcript/ 
Report from 

multiple teams List of 
relevant 

concepts 

Text Concordances – visualize concept 
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Figure 3.1. Chart showing the analysis performed on text from the
discussions, representations, and reports from brainstorming sessions.

Concept Maps: We used Leximancer [91] to conduct the conceptual and rela-

tional analysis, the results of which are then displayed as a “concept map”. Lexi-

mancer uses computational linguistics and machine learning to extract “textual con-

cepts” based on word co-occurrence statistics. These concepts are ranked based on

their relevance to the most occurring concept, as shown in the tables on the left and

the right in Figure 3.2. The most occurring concept thus has a relevance of 100%. The

relational analysis uses a concept-mapping algorithm based on a variant of Chalmers

& Chiston’s spring-force model [92] to identify relationships between these textual

concepts. The output is the concept map, which consists of a graph with nodes as

concepts and edges as relations between concepts. The concepts are further clus-

tered into groups called “themes”. The concept map represents (1) concept frequency

through brightness of a cluster of concepts, (2) inter-concept relative co-occurrence

frequency through the intensity of edges connecting related concepts, (3) total con-

cept connectedness through hierarchical order of appearance on the map, and (4) a

representation of direct and indirect inter-concept co-occurrence through proximity
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Concept Count % Relevance Concept Count % Relevance Concept Count % Relevance

idea 308 100 idea 597 6 idea 287 100

toy 228 74 toy 372 3 car 214 75

ball 154 50 car 362 3 ball 194 68

water 132 43 ball 347 3 cool 176 61

draw 127 41 cool 299 3 draw 143 50

car 123 40 draw 272 3 water 130 45

things 109 35 water 262 2 things 129 45

time 104 34 use 247 2 use 125 44

motion 101 33 shoot 245 2 toy 121 42

goes 98 32 things 238 2 wheels 105 37

different 91 30 wheels 218 2 game 103 36

use 91 30 game 191 2 play 99 34

stuff 88 29 different 185 2 different 92 32

top 82 27 play 184 2 guess 91 32

probably 78 25 motion 183 2 thinking 90 31

game 75 24 goes 173 2 work 86 30

spring 72 23 work 172 2 stuff 83 29

thinking 70 23 stuff 171 2 motion 79 28

play 67 22 time 169 2 take 77 27

guess 67 22 thinking 160 2 guy 76 26

boat 66 21 guess 158 1 goes 75 26

hit 65 21 take 131 1 time 65 23

air 61 20 top 129 1 people 59 21

inside 60 19 hit 128 1 air 54 19

ones 55 18 probably 128 1

whole 41 13 air 116 1

cause 41 13 guy 116 1

ones 112 1

trying 108 1

inside 102 1

spring 102 1

feel 99 1

whole 72 1

Unique to Free

Unique to common corpus

Legend

Common concepts

Unique to D-C

Batch 1 - Free Brainstorming
Proximity Analysis         

(between batches)
Batch 2 - D-C Brainstorming

Figure 3.2. Concepts extracted from batch-wise brainstorming tran-
scripts, with concepts unique to each batch highlighted. The proxim-
ity map on top shows concepts clustered nearer the groups they occur
more in. Warmer hues of concept clusters indicate higher frequency
of occurrence.

of the concepts on the map. Further, Leximancer allows manual tagging of a text

corpus, which is then represented on the concept maps as a category [93]. The final

concept map then clusters the discovered textual concepts around the specified tag

categories, as shown in Figure 3.3.
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Figure 3.3. Proximity diagram for concept representation. The grey
circular sectors are centered on the free and d-c categories, and are of
the same radius. The higher clustering around free indicates a higher
number of concepts from the corresponding teams.

However, in this representation, the discovered concepts do not characterize the

whole text: they are specific to the tag categories and do not cover the major themes

of the whole data set. Relevance here is then calculated as the probability of a concept

occurring in a specified category, i.e., one of the two batches in this study. Thus the

concept with the highest occurrence in both categories does not have a relevance of

100%, as shown in the central table marked “Proximity Analysis” in Figure 3.2. This

visualization of the concept map in relation to the tagged categories is then useful for

a comparative analysis, in our case, between batch 1 and batch 2.
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Lexical Dispersion Plots: The text corpus for each batch contains content

from nine teams. Thus, it becomes important to examine the distribution of the

most occurring concepts. A concept cannot be said to characterize a batch unless it

is fairly uniformly distributed across most teams in the batch. While it is possible

to construct proximity maps with each team as a category to identify if some of

the concepts are skewed toward certain teams, the human readability of such maps

becomes difficult with increasing number of teams. A lexical dispersion plot [80, p.

120] offers a more visually preattentive way to represent concept distribution. The

plot indicates locations in the text corpus where a particular concept occurs, and

therefore can offer the following visual representations:

1. In analysis of transcribed meetings and discussions, it can show temporal pat-

terns in the occurrences of concepts within and among teams.

2. It provides a visual representation of document structure with respect to the

concepts of interest.

3. It provides a means of visually comparing concept occurrence counts, which can

be used to identify common or unique ideas among teams.

The lexical dispersion plot in our study was generated using the Python Natural

Language ToolKit (NLTK) [94].

Concordances: In addition to consistent distribution of a concept’s occurrences

across teams, its significance is also determined by its usage in context. For example,

frequent occurrences of the word “feel” in a design discussion could indicate that par-

ticipants are discussing user experience, or are using the word to voice their opinion.

A Key Word In Context (KWIC) concordancing program [79, p. 31] is used to display

all occurrences of a word of interest, along with their surrounding words to establish

context. The word in question is aligned vertically to provide a visual reference for

the user to identify patterns in the preceding and succeeding words. Figure 3.5 shows
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Figure 3.4. Text dispersion plots of selected concepts from sketch
annotations aid the identification of patterns and anomalies.

an output of such a concordancing program. In addition to providing a means to vi-

sually determine the context of a concept, concordances are also useful in identifying

compound concepts: groups of words that carry a meaning different from that of the

words that make it up, such as “remote control”. Concordances were thus used to

(1) further vet the concepts for significance, and gain insight into the sense in which

the concept was used (2) To disambiguate word senses visually, and (3) to identify

compound concepts and further iterate over the conceptual analysis with Leximancer.

3.2 Results and Discussions

We sought to study the effects of two different approaches to brainstorming among

student teams, and to identify any patterns in their discussion, representation, and

reflection that may be attributed to the process they followed. Our results are thus

structured under the three heads of Concept Discussion, Concept Representation,

and Concept Reflection. Under each of these heads, we discuss our findings from the

content analysis, and explain the visual representations generated using the lexical
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dispersion plots and KWIC concordances, which allowed us to drill down to details

and gain further insights.

3.2.1 Concept Discussion

The conceptual analysis of each batch revealed 27 concepts for the Free batch,

and 24 concepts for the D-C batch. The proximity analysis of both batches revealed

33 concepts, 7 of which were unique to the Free batch and 5 to the D-C batch. A

complete list of the concepts color coded according to uniqueness to the two batches

is shown in Figure 3.2.

Concepts closest to the “Free” and “D-C” categories on the proximity map were

then considered as potentially significant concepts. Dispersion plots of these selected

concepts in their corresponding text corpora revealed that “top”, “probably”, “time”,

and “motion” were both relevant to and consistent within the Free batch. Similarly,

“guy”, “cool”, “game”, “play”, “take”, and “draw” were selected as potentially sig-

nificant concepts for the D-C batch.

Text concordance of these concepts revealed no unique use of “probably”, “time”,

and “motion”. However, there were 8 instances of the mention of “top” as a toy by

four teams in the Free batch, but none in the D-C batch. The D-C batch showed

relatively higher incidences of the word “guy” in the specific context of an action

figure, and lower occurrences of the term “play value” than the Free batch.

The analysis of concept discussion does not reveal much information, and one of

the main reasons can be seen in the ranked concept list from the proximity analysis,

shown in the central table of Figure 3.2. The percentage relevance of the top concept,

“idea”, is 6%. As mentioned earlier, this number indicates the percentage incidence

of the concept in the text corpora from either of the batches. A cursory reading of the

transcripts shows a significant amount of banter among team members, which dilutes

the occurrences of discussions meaningful to the brainstorming exercise. A possible

solution could be to manually excise non-relevant discussions from the transcripts,
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but this may result in the loss of information that could potentially contain records

of “chance encounters” [95]. A more challenging but fruitful approach would be to

manually identify the presence of such instances of creativity that come from chance

encounters with new content, stories, or recall of past experiences. The visualization

pipeline used in this work may not be sufficient for this task, but a more hierarchical

visualization of broad-level concepts from text [84] could perhaps aid discovery.

3.2.2 Concept Representation

As mentioned in section 3.1.5, the text corpora from concept representation con-

sisted of annotations made on sketches. These were isolated words and phrases, and

the proximity of these words on the transcribed text file might have meaning only if

they were from the same sketch. Thus the results of the conceptual analysis had to be

interpreted with care. The concept clusters were unlikely to have any thematic mean-

ing, but the proximity of the concepts to the manually-assigned categories of “Free”

and “D-C” was still meaningful. Figure 3.3 shows the proximity diagram for concept

representation, with circular sectors of the same radius drawn centered at the “Free”

and “D-C” categories to show the variation in clustering density. It was immediately

evident from the diagram that concepts were more heavily clustered around the Free

batch, and those clustered around the D-C batch occurred less frequently. This was

also evident in an examination of the ranked concepts from individual analyses of text

from each batch: concepts unique to the Free batch were more frequent in the the

combined proximity analysis than those unique to the D-C batch. Lexical dispersion

plots of selected concepts helped discard the concepts “catapult” and “parts” from

both batches, while “water”, “toy”, “gun”, “wind” were selected for examination in

the Free batch. “Motor” and “body” were concepts relevant to the D-C batch that

were selected for further analysis. Some of these plots are shown in Figure 3.4.

A concordance analysis showed that “water” continued to be of significant impor-

tance: eight teams from the Free batch discussed ideas for water toys or games, while
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Figure 3.5. Text concordances from concept representations. Ex-
amining the usage of the identified concepts helps understand their
significance.

only three teams discussed water-based ideas for toys. The word “wind” was used in

the sense of “wind up” (wind-up toys) in almost every occurrence in the Free batch,

while it appeared only once in the D-C batch, in the context of “wind powered”.

The word “toy” was five times more frequent in the Free batch than the D-C batch.

In terms of sketch annotation, this could be significant: it could mean that the Free

batch concentrated more on types of toys, without getting too much into detail, while

the D-C batch showed a higher tendency to get into detail. This inference is further

supported by the higher frequency of use of the terms “motor” and “body” in the D-C

batch. Text concordances of both concepts revealed that they referred to components

of the toys, thus showing a greater focus on how they worked. Some representative

concordances are shown in Figure 3.5.

The inferences from the sketch annotations section were more or less what was

expected: the alternating divergent-convergent process requires, in the second cycle,

to concentrate on features of the design, and helps the designers focus on detail. The

next question that came up was, which approach is better? The Free brainstorming

batch came up with more kinds of toys, which is beneficial for initial idea generation,
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while the D-C batch focused on details, which is beneficial for better quality and

evaluation of ideas. The question of duration also comes into the picture: did the

D-C batch focus on details “too quickly”? Is it better to use an alternating divergent-

convergent brainstorming session in one go, or is it better to have a gap between each

cycle to allow for reflection? These could form the topic of future research.

3.2.3 Concept Reflection

The proximity diagram for concept reflection, shown in Figure 3.6 indicates a

higher incidence of shared concepts between the two batches, shown in the higher

clustering in the middle of the “Free” and “D-C” categories. As with concept reflec-

tion, circular sectors of equal radii centered on the category nodes and overlaid on

the diagram helped isolate concepts that were closest to each category. A lexical dis-

persion plot of the selected concepts helped eliminate “car”, which was concentrated

on two teams in the D-C batch, and also helped draw attention to “team”, which

had a higher occurrence in the Free batch, and “group” and “feature”, which seemed

to have a higher occurrence in the D-C batch. While “toy” had high occurrences in

both batches, it seemed relatively higher in the D-C batch. An interesting observa-

tion here was that the occurrences of “toy” were concentrated in the latter half of

each team’s report. This was consistent with our requirement which stated that the

reports should have a separate sections for the process and the product: “toy” would

occur more in the section discussing the product. This structure being revealed by

the lexical dispersion plot highlights its characteristics discussed in section 3.1.5.

Text concordances of the selected concepts revealed that the D-C teams discussed

more about the features of the toy than the Free batch, which is consistent with the

results of the concept representation. The use of “group” and “team” were revealed to

be synonymous to each other, and combining the two revealed that reports from the

Free batch discussed more about their teams. Closer examination of the occurrence

patterns of “group” and “team” did not show a clear concentration of occurrences
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Figure 3.6. Proximity diagram for concept reflection. the grey circu-
lar sectors are centered on the free and d-c categories, and are of the
same radius.

in either section of the report. The D-C batch also had higher instances of the term

“final” which was used in the context of “final concept” or “final design” in both

batches. This could be due to the emphasis on the selection process that is placed

due to the alternating divergent-convergent processes, and merits further study.

A concordance of all concepts from the proximity diagram also revealed that the

D-C batch showed 25 instances of the term “game”, while the Free batch showed 5. A
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preliminary inference that could be drawn from this is that the D-C batch tended to

reflect more on the use of their toy, and how it would be played with. However, more

teams from the Free batch reported on the play value [90] of their toy, while the term

“customers will value” was used uniquely (but not very frequently) in the reports

from the D-C batch. This could reinforce the inference of the D-C teams reflecting

more on the user experience. A further study on concept discussion focusing more

on terms related to the experience of using the toy could reveal more about how the

two processes might influence consideration towards the user experience.

3.3 Conclusions and Future Work

In this chapter, our key contribution is a visualization-driven approach to aug-

ment automated content analysis tools in order to enable a domain expert to observe

patterns, identify anomalies from an overview of data, while also enabling a closer

examination of data in context to gain deeper insights. Our primary motivation was

to enable the analysis of large bodies of unstructured text obtained from brainstorm-

ing sessions of student groups. Our primary goal was to understand the difference

between the effects of two distinct modes of brainstorming, embedded in the context

of a toy design course. To this end we concretely investigated our approach through

the study of discussion, representation, and reflection of concepts generated during

two independently conducted sessions: free brainstorming, and alternating divergent-

convergent brainstorming. The visualization techniques used were lexical dispersion

plots, which helped evaluate the consistence of concepts identified by the content

analysis tool, and text concordances, which helped observe the use of these concepts

in the original text body. These visualizations helped separate the relevant concepts

from anomalies, and verify the significance of the usage of these concepts, leading to

insights that would guide further studies.

We observe that the study of brainstorming design processes can be as subjective

as the processes themselves due to the inevitable involvement of several modes of



34

communication and expression distributed across several individuals in a group. This

poses a very unique challenge in terms of both the data acquired from the brainstorm-

ing sessions in different forms as well as the final concepts generated which cannot

be objectively evaluated due to absence of details. With this in view, we appreciate

the importance of more in-depth studies using our proposed approach towards con-

clusive and insightful results. Our next steps would involve a more focused analysis

of team orientation towards trends observed in this study such as user experience and

reflection on team processes. We posit that a protocol analysis of the video record-

ings would reveal behavioral aspects of participants and their relation to tendencies

observed in this study. We believe that a visualization-driven approach has immense

potential to address many of the issues related to content analysis in design studies

and must be investigated and developed further.
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4. COMPUTER SUPPORT FOR COLLABORATIVE CONCEPTUAL DESIGN

Computer support tools for design have made inroads into most design stages, from

requirements gathering to detailed design. However, the (paper) design notebook

remains the primary tool of the designer for sketching, recording observations, and

making notes. This is partly due to the user’s training—most people have sketched

on paper since childhood—and the affordances of the medium—a notebook is easily

carried around, and can store sketches as well as photos or clippings pasted to it [9].

Hong et al. [96] observe that “Where paper notebooks are used by designers to capture

work for personal reference, an electronic version has the potential of being accessed

by team members across space and time”. Moreover, digital support for sketching

has the potential to aid design collaboration, including duplication, modification, and

archival of concepts. The value of digitizing the design notebook was recognized early

on [97], but it was not until the rise of direct-touch smartphones and tablets that the

digital design notebook became a realizable vision.

Dorta [13] argues that computer support tools for ideation should “augment in-

stead of imitate”: they should use the computational and interactive power to aug-

ment traditional design methods and tools, rather than imitate them. Collaboration

adds a level of complexity to concept generation and progressive development: an

effective communication and iteration mechanism is necessary to effectively utilize

ideas generated by individual team members. Digital support for sketching should

thus augment the intuitiveness of sketching on paper with the capabilities of storage

and communication offered by computers.

With this in mind, we used skWiki [98] a web-based application framework for

collaborative creativity that would couple the interactions afforded by hand-held

personal computing devices, with the collaborative power of a web-based platform.

skWiki allows users to sketch their ideas, add text annotations and images, and share
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them with collaborators (Figure 4.5). The system also features a representation of

a team’s collaboration: a “path viewer” (Figure 4.1) that graphically and transpar-

ently represents all team activity, tracking all edits, modifications, and duplications of

sketches. skWiki was developed to support digital creativity in collaborative teams,

both co-located as well as distributed.

In this chapter, we briefly outline the requirements of a collaborative sketching

tool, and describe how skWiki addresses these requirements. We then present two

evaluations of skWiki conducted through user studies of conceptual design processes.

The first study uses a constrained brainstorming process to identify the operations

that are possible using the “path viewer”, and the second uses a longitudinal study of a

collaborative conceptual design process to provide a more higher-level understanding

of how skWiki provides higher potential for creativity in collaborative design.

4.1 Collaborative Sketching Requirements

The paper-pen paradigm enjoys its position as the medium of choice among de-

signers owing to its flexibility and ease of use. However, digital media is gaining

ground through its advantages of better storage and sharing models, with its inter-

faces rapidly evolving to bridge the gap between the two. In this section, we define

a sharing model on a digital platform in terms of four aspects required for designers,

and explain the skWiki interface on the basis of these aspects.

A1 Storage and retrieval: This aspect represents the variety of sharing opera-

tions possible using a digital platform. The fundamental operations of storage

and retrieval include:

Save: Saving a new concept (or sketch) to a storage space. This be a private

space (handheld device) or a shared space (network/ cloud storage).

Modify: The modify operation extends the save operation, and involves up-

dating (edit + rewrite) a saved sketch on the storage space.
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Branch: A branch operation occurs when a saved sketch (representing one or

more concepts) is modified and stored as a new sketch in the storage space,

commonly seen in code versioning systems.

Merge: In most concept design processes, coming up with one or more final

ideas (convergence) is as important as the divergent processes. Also, concepts

can span over multiple sketches and thus requiring a merge operation that can

merge the sketches together into one.

Some of these operations are possible with pen and paper. However, they require

a lot of manual effort and use of scanners or copy machines, and lack the level

of ease and control possible in digital platforms.

A2 Atomicity of the data: In our context, atomicity refers to the smallest iden-

tifiable entity in the data that can stored through one transaction with the

storage space. While an image can be stored on a file system, structured data

in the form of text or vector representations are more atomic, and can be stored

on a database. This allows for higher retrieval speeds and richer, more con-

trollable encoding of the data. For sketches, this translates to the capture and

storage of its history, at the level of individual strokes.

A3 Collaboration representation: Visual representations of authoring and col-

laboration can provide necessary group and situation awareness to the user. A

graphical representation of user activity and of user contribution to a shared

repository helps provide an overview of the evolution of the designs.

A4 Capture of user intent: This includes capturing user comments and explana-

tions of the concept for the understanding of other users and/ or administrators.

Types of capture may include video, audio, and textual methods.
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4.1.1 Sketching Framework Used

Based on the above requirements for collaborative sketching, a web-based system

called skWiki was developed by Zhao et al. [98]. skWiki, short for “sketch Wiki”,

helps manage concepts that are generated in the form of different media types such

as text and sketches. It captures individual user operations such as the creation of

sketch strokes or text input, and stores the operations rather than graphical entities

on a database. This allows for a higher level of atomicity (A2) in the collected data,

and enables flexible storage and retrieval of sketches (A1). By combining these two

aspects, skWiki enables history support for stored media, allowing save, branch, and

merge operations. These operations are implicit, with the user performing normal

file-like operations such as save/commit, checkout, and edit.

The collaboration representations (A3) in skWiki include a path viewer and a

thumbnail viewer. The path viewer is a node-link diagram representing the saved

ideas as nodes, and connections between them such as branch and merge as links. The

path viewer provides the ability to examine and use design sketches created by other

users, modify them, and save them as new versions. Capture of user intent (A4) in

skWiki happens through the implicit way of annotating the sketch. Figure 4.1 shows

the user-level operations using skWiki, and its representation on the path viewer.

skWiki was built as a web application using the Google Web Toolkit1 and runs

in a web browser, requiring no additional software installation. Data in skWiki are

stored as sets of operations. For example, a sketch is treated as a set of strokes, and

adding a stroke becomes an atomic operation for the sketch. The operation sequence

is stored in a database and it allows version management of the ideas generated, thus

reducing the stored data.

To evaluate our prototype, we performed two studies. The first, a study of co-

located teams on a creative task, provides a low-level understanding of using skWiki’s

persistent storage and the possibilities opened up by its branching operation. The

1http://www.gwtproject.org/
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Path Viewer 
User 1 User 2 

save/ 
commit 

save/ 
commit 

create  
sketch 

add  
detail 

copy  
sketch 

modify  
sketch 

Figure 4.1. A basic representation of what the path viewer depicts.
A sketch created by user 1, once saved or committed, is represented
on the path viewer as a node (shown in light blue). Every time the
user makes any modifications and commits the sketch, that particular
version is added to the path viewer as another node. Any of these
versions can be checked out by User 2 and modified. Upon commit-
ting, User 2’s version appears under his ID on the path viewer, with a
link to the original checked out version, called a “branch”. Branching
can thus be seen as checkout + modify + commit.

second is a longitudinal study of one team in their conceptual design process, as part

of their course design project.

4.2 Web-Based Collaborative Sketching: A Preliminary Study

The first study aims to understand the value offered by skWiki’s “paths” model in

a collaborative conceptual design scenario. Since free-form creativity not only takes

training but is also difficult to quantify, we used a form of controlled brainstorming

called C-sketch [27]. C-sketch is a sketch-oriented adaptation of the more generic

method of 6-3-5 brainwriting [22], contextualized in a design environment. In the

C-sketch method, designers first spend 6-10 minutes sketching out an idea, and then

pass it on to the next person. Each designer then spends the next 6-10 minutes

working on editing or extending the design idea given by their teammate. This
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process continues for 2-3 iterations, at the end of which all designs sketched initially

have undergone iterative development by at least 3 people. The C-sketch workflow is

shown in Figure 4.2.
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Figure 4.2. Schematic diagram of the traditional C-Sketch model
(top) versus its skWiki version (bottom) used in the study. Each
column shows sketches made or modified by each participant. The
grey arrows show the “sketch movement” paths of the traditional C-
sketch method, and colored arrows show the paths enabled by skWiki.
Potential paths are shown as translucent, while actual paths taken are
shown with solid arrows. The skWiki model allows duplication and
multiple copies at each round (aquamarine arrows), as well as for
branching from earlier states (orange arrows). The team thus has
more choices at the end of each round, can access all sketches at the
end of the session.
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4.2.1 Experimental Conditions

One of the main drawbacks of methods such as C-sketch is that some promising

ideas can be lost in the series of iterative edits. Additionally, at the end of the

session, there are only as many ideas as there are designers, with intermediate—and

potentially promising—ideas being “lost”. We hypothesized that the history support

afforded by skWiki, along with the option to branch out and create multiple versions

of the same sketch, will provide designers with more potential sources of inspiration

and development for the design problem at hand.

In order to study the effects of the affordances offered by skWiki, we involved each

team in two different conditions:

• Traditional: The team used a traditional three-round C-sketch workflow as

described above, with only sketch movement (no copying) between participants,

and with only the latest sketch version available for each round.

• Full skWiki: Here the team used the same three-round method as above, with

two main differences: (1) at the beginning of the second and third rounds, they

could choose any sketch to work on except the sketch they had created in the

previous round, and (2) when selecting a final design (end of round 3), they

could choose sketches from rounds earlier than the immediately preceding one.

While the C-sketch method typically involves sketching on paper. our intent was

not to compare paper vs. digital media. We thus used skWiki for both versions: a

version without branching and history “rollback” for the C-sketch condition, and a

version with both these features for the full skWiki condition. The aquamarine and

orange arrows in Figure 4.2 show the branching and rollback operations respectively.

4.2.2 Participants

We recruited 4 teams of 3 paid participants each (11 mechanical engineering gradu-

ate students and 1 post-doctoral researcher, all male). Participants were aged between
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21 and 33 years. 10 participants were comfortable with sketching, and 5 considered

themselves proficient. 4 participants had prior knowledge of the C-sketch method.

Participants were randomly assigned to teams based on available time slots.

4.2.3 Apparatus

All participants used Microsoft Surface Pro tablets, equipped with the Surface

Pen for sketching and annotations. Both conditions used different versions of the

skWiki interface, running on the Google Chrome browser. For the traditional C-

sketch condition, the skWiki interface was provided with curbed features based on the

C-sketch method, such as adopting a sketch and editing it, with no copy or history

support. The skWiki C-sketch condition also required a level of feature curbing:

history support was minimized to what was available at the end of each round, but not

to a stage between them. These constraints helped control the experiment conditions,

in addition to allowing the participants to concentrate on the method rather than

spend their time on learning and remembering commands.

4.2.4 Tasks

The teams were assigned two tasks, one for each condition: (1) design a toy

catapult with an innovative launching mechanism, and (2) design a new kind of

somersaulting toy. The order of conditions and tasks were varied among the team to

balance out learning effects as well as testing bias.

Each task was split into three rounds of 6 minutes each. In the first round, par-

ticipants were asked to sketch one idea each for the toy, and annotate it so that their

team could understand the idea without additional explanation. No verbal commu-

nication between team members was allowed during the three sketch rounds. In the

second and third rounds, each participant was asked to develop or edit the sketch

of another participant, without completely erasing it. In the case of the traditional

C-sketch method, participants were asked to circulate their sketches clockwise to their
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adjacent teammate. For the full skWiki condition, participants could choose any of

their teammates’ sketches from any stage, but not their own. This restriction was

imposed to prevent participants from continuously working on their own idea for the

duration of the session. At the end of the session, participants were asked to spend 5

minutes to discuss and select the most promising concept.

Participants were asked to respond to questions pertaining to the usefulness and

ease of the methods on a Likert scale. A log of participant choices in rounds two and

three in the skWiki condition was also recorded to identify cases of departure from

the traditional method afforded due to the branching (creating copies) and history

support (choosing a sketch from the first round during the third). Finally, each team’s

selection of the “most promising idea”, and its corresponding round, was noted.

4.2.5 Results and Discussion

The branching operations performed by participants in each team for both the

traditional C-sketch and the full skWiki conditions are shown in Figure 4.3. Below

we discuss how features that are unique to skWiki were used by the teams.

Cloning and History Rollback The C-sketch flow of design follows a linear

sharing model through a “passing the paper around” paradigm prescribed by the

method that the participants were required to follow. For the skWiki method, par-

ticipant activity shows instances of multiple copies of a sketch in every round, for

every single team. Of these instances, three teams branched out (cloned) from earlier

versions of their team members’ sketches, made possible through the “history roll-

back” support. Three out of four teams selected their final design from the last set

of iterations, shown by the “starred” nodes in Figure 4.3. However, it is noteworthy

that one team selected a design from their second round, which would have been lost

had it not been for the history rollback support.

Participant responses to survey questions support the usefulness of the branching

and history rollback afforded by skWiki: of the 12 participants, 11 preferred the full
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skWiki model of C-sketch. Reasons cited for the preference ranged from the ability

to choose a more promising idea, the availability of a larger variety of ideas to choose

from, and the ability to see more popular or “growing ideas”, as one participant put

it. Participants also cited the ease of collaboration as another reason for preferring

skWiki. The one participant who preferred the traditional C-sketch model of sharing

cited his reason as the full skWiki system allowing the designer to stick to a limited

set of designs if he so chooses, as opposed to C-sketch, which ensured that everyone

worked on everyone else’s designs. However, all 12 participants reported that they

found the option to select ideas useful.

Path Viewer with Preview: Recall that the traditional C-sketch path viewer

for the user study was configured to show only the latest sketches of all the users at

any point of time, while for the skWiki model it showed the revisions of all users that

were uploaded at the end of each 6-minute session. The post-survey responses suggest

that a majority of the users (average of 75%) found it easy to decide on a version

to download for the next round during full skWiki model even though more versions

are shown than in the traditional C-sketch. For the full skWiki sharing model, we

anticipated a decrease in the ease of browsing and choosing ideas in later rounds

owing to an increase in the number of ideas to choose from. Participant responses,

however, were mixed: 7 out of 12 participants mentioned that it was easy for them to

choose an idea to work on in the second round, while 1 participant reported finding it

difficult. 4 participants were undecided. Surprisingly, the number of participants who

found it easy to choose ideas increased for the third round to 9 participants, while

3 participants found it difficult. Interestingly, this increase was accompanied by a

mix of transitions: all participants who found it difficult to choose in the previous

round found it easier to choose in the last round, whereas 3 participants who found

choosing in the second round easy, had the opposite experience in the third round.

The increase in participant ease could be explained by a greater familiarity with

their team member’s designs by the third round, assuming changes are clear in the

thumbnail view. A more complex design change, however would entail checking out
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Paths in C-sketch 
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Paths taken by teams using skWiki 
Team 1 Team 2 Team 3 Team 4 

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 

(all teams) 

Figure 4.3. Comparison between paths taken in the C-sketch model
(left) and skWiki (right) in the user study. Each gray node repre-
sents a sketch by a participant (labeled as p1, p2, p3) at the end of
every round. Standard “passing on a sketch” operations are shown as
gray arrows, branching to create multiple copies is aquamarine, and
branching from history is orange. Stars indicate a sketch was selected
as the best design.

the sketch and examining it closely, a process that becomes more tedious the more

choice one has. This is echoed by the participants: some suggested using larger

previews, or larger thumbnails with the facility to flip through them easily.

From a methodology point of view, it is premature, based on this study alone,

to conclude that more choice for the designer is better. In fact, allowing the de-

signer, especially a design engineer, to freely choose a design could lead to fixation,

as engineers tend to favor previously encountered designs or designs they developed

themselves [99]. However, the purpose of skWiki is not to merely provide choice, but

to preserve every stage of work as well as to allow for potential branching (cloning)

of ideas at every such stage. In the context of the C-sketch method, Shah et al. state

saturation—participants feeling “that they could no longer contribute to the idea

generation process” [27, p. 191]—as one of the issues of their method. With skWiki,

this saturation can be delayed since each designer can have the opportunity to work

on every other designer’s initial design, without incremental additions or modifica-

tions of features done by other designers, thus geometrically increasing the number

of potential iterations. Additionally, designers can return to the problem days later
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and pick up where they left off, owing to the persistence of every state of their design

on the server. Finally, as seen with Team 2 in Figure 4.3, skWiki preserves promising

ideas that would otherwise be lost to further iterations.

4.3 Web-Based Collaborative Sketching: Longitudinal Study

We performed a follow-up longitudinal study with skWiki in a classroom scenario,

where it was used by a team in an undergraduate toy design course over a period of

19 days. With this study, we sought to answer the following research questions:

Q1 How does the availability of “shared design notebooks” aid the concept gener-

ation and development process? In other words, does skWiki aid lateral and

vertical transformations [17] of ideas between designers in a team?

Q2 As a research tool, what insights does the path viewer representation offer about

the design process itself?

Note that the study was meant to examine how digital creativity platforms affect

the design process, and not directly compare the performance of skWiki with that

of a traditional ideation process using pen-paper as a medium. Such a comparison

is premature as sketching performance on direct-touch tablets is yet to meet that

of paper [38], and comparing design processes between the two media would require

conflating the effects of sketching performance as well.

4.3.1 Sketches as Idea Transformations

Ferguson [100] identifies three kinds of sketches that designers make: the thinking

sketch, for nonverbal articulation of their ideas, the prescriptive sketch, for detailing

an idea to a draftsman or a CAD modeler, and the talking sketch, as a means of

collaboration and communication with other designers. Of these, the thinking sketch

and the talking sketch have a fluidity and ambiguity to them that renders them
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Lateral Transformation (new sketch) Vertical Transformation (new sketch)

An “extreme sledding” toy A “parachuting car” game

A toy car A toy racecar that can driftA stunt car with a rampA toy racecar that can drift

Lateral Transformation (modify sketch)

A pulley to drive the arm linkageA linkage system for a toy robot’s arm

Vertical Transformation (modify sketch)

Figure 4.4. Lateral and vertical transformations observed in the
study. Lateral transformations can occur through modification of an
existing sketch, or through the creation of a new sketch inspired from
an existing sketch, to create a new idea. Vertical transformations
can occur through adding details such as dimensions, annotations,
or features to an existing sketch, or through a new sketch showing a
different detail, to develop an existing idea.

mutable—an important attribute for divergent thinking. They are thus of particular

importance to those studying the conceptual design process. Specifically with respect

to design sketches, Goel [17] identifies two main kinds of transformations:

• A Lateral Transformation involves a change or movement from one idea to

another idea that is related to, but distinct from, the original. Lateral trans-

formations are essential for divergent thinking: generating ideas, exploring al-

ternatives, and expanding the problem space.

• A Vertical Transformation involves detailing an existing idea by adding an-

notations, dimensions, or features. Vertical transformations can be seen as a

form of convergent thinking, to help refine an idea and develop its details.

Lateral and vertical transformations are thus signs of divergent and convergent

thinking, which in turn enhance the creativity and quality of the final design [9].
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Each of these transformations can take two forms (see Figure 4.4). A lateral

transformation can be performed by either (a) referring to, or being inspired by

an existing sketch, and creating a new version that denotes a design alternative,

or (b) modifying an existing sketch to create an alternative. Similarly, a vertical

transformation can be performed by either (a) creating a different view of the object

denoted in the original sketch to show more detail, or (b) embellishing the existing

sketch with dimensions, annotations, and additional features to provide detail.

In both transformations, option (b) while more convenient than (a), would re-

sult in the original idea being lost to some degree. A collaborative design setting

increases the potential for lateral and vertical transformations, but the sketching

medium—traditionally pen/ pencil and paper—inhibits most instances of modifica-

tion, especially when it comes to others’ sketches.

Among collaborative, graphical ideation techniques, the C-sketch method [27]

used in our preliminary study, prescribes the use of modification to effect lateral and

vertical transformation, while the gallery method [25] prescribes the use of creation (of

a new sketch) to do the same. The C-sketch method reduces the inhibition against

modification by incorporating it into its prescriptive method, but suffers from the

loss of earlier ideas in the bargain. The gallery sketch, while less prescriptive, is

time-consuming and suffers from the limitation of the (paper) medium on which it

is often performed. Digital tools for collaborative sketching have the potential to

enable lateral and vertical transformations both by creation and modification. Such

a system would need to make sketches persistent, by preserving older versions, and

shareable, through duplication.

4.3.2 Participants

We recruited one team of 4 participants (3 male, 1 female), of ages 21-22 from an

undergraduate senior elective course on toy design. All four were undergraduate stu-

dents of Mechanical Engineering. Since the timing of the study was chosen to coincide
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Figure 4.5. The experimental setup and apparatus are shown in the
photograph on the right, with a screenshot of the skWiki interface
on the left. skWiki runs in an ordinary web browser, and is thus
platform-independent. The team is shown using skWiki on Microsoft
Surface Pro devices, while a laptop running skWiki serves as a shared
display for discussing ideas.

with the concept generation stage for the course project, the participants had been

trained in the fundamentals of freehand sketching as detailed in Taborda et al. [89],

understanding play value [90], as well as ideation techniques such as brainstorming

and SCAMPER techniques [88]. As an incentive, participants were granted personal

use of the tablet computers used for the duration of the study.

4.3.3 Apparatus

Each participant was given a Microsoft Surface Pro equipped with its dedicated

stylus, the Surface Pen. skWiki was run on the Google Chrome browser in all the

devices. In addition, a laptop, also running skWiki on the Chrome browser, was

connected to a large display for participants to view and discuss each other’s sketches

whenever required. The experimental setup is shown in Figure 4.5. Note that in the

normal working of the course, the participants are required to work with their teams

in a classroom with paper and a board for each team to pin up their ideas.
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4.3.4 Context of the Study

The course structure requires students to spend the most part of a laboratory

session in concept generation using the above techniques, after which they continue

working on the concepts outside class hours. They submit their final concept 18 days

from the in-class concept generation session, and start work on detailed design using

a CAD application. We designed our study to follow the same process. The study

began from this concept generation session, and ended when the students moved on

to detailed design and started generating CAD models.

The longitudinal study was split into two main stages:

1. Concept generation session: This was the part of the study when partici-

pants were more closely monitored. An observer was present at all times in the

same room as the participants, monitoring them through the given tasks, and

helping the team with any problems they faced with skWiki. Participants were

video recorded with their consent.

2. Concept development: Here participants were required to use the system

whenever they worked on the design. Their activity was not physically moni-

tored, with server logs later used to study the team activity on skWiki.

At the end of stage 1, participants filled out a survey, reporting on their demo-

graphics and an immediate feedback of the process they followed and their experience

with skWiki. At the end of stage 2, we conducted a short interview with the team,

where they provided further feedback of their use with the system.

4.3.5 Tasks

The team was given a user interface guide, to show them the different features and

operations possible with skWiki. The process of sketching, adding more canvases, and

using the path viewer was explained, and the team was asked to practice creating and
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saving sketches, as well as branching and merging operations. The team was allowed

to practice using the interface until they were comfortable with it.

We then asked them to generate concepts for their project, an action toy. The

concept design process was split into three tasks, with five-minute breaks in between:

Task 1 (25 minutes): The team was asked to generate ideas for the toy based on

the requirements given. Participants were instructed to sketch out no more than one

idea per layout. However, they could create multiple sketches of the same idea on

one layout. Participants were also asked to add brief descriptions and annotations

wherever possible, and use the shared display whenever necessary to explain your

ideas to the team.

Task 2 (25 minutes): Participants were asked to discuss all generated ideas and

select the most promising ideas. They were to extend these ideas, combine them with

others, and generate new concepts, either by creating new sketches or by branching

out from existing sketches using the path viewer.

Task 3 (15 minutes): The team was asked to select a final idea and refine it.

At the end of the in-class session, the team was asked to continue using skWiki on

the tablets, to elaborate the final concept and develop it over the following 18 days,

at which point they would move to detailed design using a CAD application.

4.3.6 Results and Discussion

We used skWiki’s interface to obtain all versions of the participants’ sketches. We

also used skWiki’s path viewer to determine instances of branching, sketch develop-

ment, and merging, as well as a rough overview of the sequence in which sketches

were generated. The team activity on skWiki was matched up to the video recordings

determine which sketches were created during each of the three tasks. We classified

all sketching activity into the following categories:

S1 The creation of a new sketch from scratch, representing a new idea, with no

reference to pre-existing ideas.
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S2 The creation of a new sketch, representing a new idea that is inspired from or

based on an earlier sketch, created by the same or by a different participant.

S3 The creation of a new sketch, showing additional detail of an existing idea.

S4 The modification of an existing sketch to create a new idea that is distinct from

the original idea, but uses elements from the sketch.

S5 The modification of an existing sketch to add further detail to the existing idea,

through dimensions, annotations, or additional features.

In the path viewer, sketches of types S1, S4, and S5 were immediately visible: S1

appeared as a new node, while S4 and S5 were visible as either branches or successive

commits with significant changes. Studying the actual sketches further helped deter-

mine if they were of type S4 or S5. S1 and S3 were less straightforward: apart from

studying the content of the sketch, noting the sequence in which the sketches were

created was necessary to determine if a sketch belonged in either category. For the

in-class concept generation session, viewing the video of the team discussion further

helped categorize these sketches. The sequence of sketches by each participant, along

with the identified source for inspiration or modification are shown in Figure 4.6 for

the in-class concept generation session, and in Figure 4.7 for the out-of-class concept

development sessions.

We immediately see that sketches of type S2 and S4 fall under lateral transforma-

tions, while sketches of type S3 and S5 fall under vertical transformations.

In-Class Concept Generation: Concept generation is essentially a process of

exploring and expanding the problem space. We thus expected to see more sketches

of types S1, S2, and S4 in this session, with a higher concentration of new ideas

from scratch (S1) during task 1, and more lateral transformations, such as new ideas

inspired by existing ones (S2) or modifications of existing ideas (S4), during task 2.

This was indeed the case, as we can see in Figure 4.6. While vertical transformations

(S3 and S5) are rarer in such situations, it is not unexpected to see them.
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Lateral Transformation 
(modified sketch) 

Vertical Transformation 
(new sketch) 

Lateral Transformation 
(new sketch) 
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P2 

P4 

Vertical Transformation 
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= concept selected for project 

Figure 4.6. Lateral and vertical transformations observed in the in-
class concept generation session with skWiki. P1–P4 are members of
the design team, and their sketches are denoted by the blue nodes,
arranged in the order of creation from left to right. Lateral trans-
formations by branching, lateral transformations by visual reference,
and vertical transformations (see Figure 4.4) that occur during this
session are shown.

From the point of view of skWiki, the inter-participant transformations were of

particular interest: evidence of branching and/or merging of ideas using skWiki, or

sketches of types (S4 and S5). This occurred twice in this session. The first occurrence

was between P2 and P1 as a lateral transformation: P1’s idea of a toy sports car that

“drifts” was transformed by P2 into a toy stunt car with a take-off ramp. The second

transformation occurred between P1 and P4 as a vertical transformation: P1’s idea of

a mechanical spider was detailed by P4 through the addition of annotations detailing

it as a wind-up, non-scary spider capable of making “random motions”. Note that

while the instructions of Task 3 were to select a concept and develop it further, it

was not a mandatory requirement, and so the team merely short-listed promising

concepts. The other lateral transformation seen was by participant 4, who used the

preview and checkout options in the path viewer to draw inspiration from existing

ideas and create a new sketch (type S2). There were no sketches of type S4—vertical

transformations created by drawing a new sketch detailing an existing idea—which

is normal for a concept generation stage. The final concept selected by the team,
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Figure 4.7. Lateral and vertical transformations observed in the out-
of-class concept development session with skWiki. P1–P4 refer to the
same participants as in Figure 4.6. Since this phase involves concept
development, one would expect addition of detail to the selected con-
cept, which translates to a higher number of vertical transformations
as compared to the concept generation phase.

a robot sparring game proposed by P1, is represented by the node with a star in

Figure 4.6 and its sketch is shown in Figure 4.5.

Out-of-Class Concept Development: The team was given possession of the

tablets and styli for the next 18 days to develop the selected concept. We thus

expected to see more vertical transformations of types S3 and S5, and these are

indeed evident in Figure 4.7. While individual or team sessions during this stage

were not monitored physically, monitoring the server activity helped determine that

there were 3 sessions of individual participants developing concepts, with no-one else

being online at the time, and one group session with all participants online at the

same time. Our final interview with the participants revealed that they were also

collocated during this session.

All the work done during this stage was in developing the selected concept. Tech-

nically, this meant that every single node in Figure 4.7 was a vertical transformation

of the selected concept. This is not explicitly shown in the figure, so as to empha-

size the transformations that occur within these sketches. Note that all instances of

skWiki’s branching and continuous commits here take the form of vertical transfor-

mations, with only one inter-participant transformation between P1 and P4, where
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Table 4.1. Number of sketches in each type (S1–S5) by each participant (P1–P4).

Number of Sketches

S1 S2 S3 S4 S5

Concept Gen.

P1 3 0 0 1 1

P2 3 0 0 1 2

P3 4 0 0 0 0

P4 7 1 0 0 2

Concept Dev.

P1 6 0 1 0 4

P2 1 0 0 0 0

P3 3 1 0 0 0

P4 4 0 1 0 2

P4 adds further detail to annotations created by P1 on a mechanism description.

Another interesting observation here is the emergence of participant profiles, notably

that of P1 and P4: P1 commits fewer sketches in the concept generation session, but

after his concept is chosen for the project, there is a marked increase in the number of

commits he makes. P4’s commits remain high in both sessions. Table 4.1 shows the

number of sketches under each category (S1–S5) by each participant for the concept

generation and concept development sessions.

Feedback from the team was positive overall: 3 out of 4 participants found skWiki

to be an effective and fun way to collaborate. The fourth participant reported server

lag as the main reason why he did not find the system effective. All team members

reported that they felt less burdened due to skWiki, as they did not need to carry

their sketches around, and that even without the tablets, they could open a browser

on any computer and access skWiki to look up their sketches. They also liked the

idea that saved sketches become immediately accessible to the entire team, and they

no longer needed to be collocated.
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With respect to the sketching experience, responses were mixed, with two partici-

pants finding the tablet hard to sketch on, while the other two found it easier to adapt

to. All team members used the stylus to annotate the sketches, in spite of a keyboard

being available, and the team was unanimous in their dislike of the application’s rel-

ative insensitivity to handwriting. They suggested the embedding of audio files to

sketches so they could speak out details while annotating key points, which would

make communicating easier in a distributed collaboration setting. They also reported

feeling impatient when waiting for a teammate to finish a sketch and share it, before

they could view and discuss it; they desired a model that would update in real time.

Finally, the team mentioned that they would like a “shared whiteboard” emulation,

where multiple people could sketch on the same space simultaneously, which would

improve their collaboration.

4.4 Implications

Our skWiki implementation uses the paths concept to support effortless collabo-

rative creating, sharing, and merging for multimedia. A key component for managing

these meandering paths is the path explorer, which not only tracks paths in space

but also in time and across multiple users. Through these studies, we attempted to

answer our research questions of how skWiki functions as a tool for collaboration,

and whether it aids the expansion of the design space and the development of design

solutions. We observed the different transformations at different stages of concept

design, and found how it fits in Goel’s categories of transformations.

Our second research question concerned the effectiveness of skWiki as a research

tool. We found that skWiki enabled us to see the progression of ideas and the col-

laboration between team members, as well as distinguish between the different forms

of lateral and vertical transformations. We will discuss both these answers in detail.
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4.4.1 Interpreting skWiki as a Collaboration Tool

Recall that skWiki was designed with the four aspects of storage and retrieval

(A1), data atomicity (A2), collaboration representation (A3), and capture of user

intent (A4). Aspects A1 and A2 in a sketch translates to history support, similar to

feature-level history support for a CAD model. Just as a CAD model is more than just

a boundary representation of a geometric entity, a sketch is more than just a collection

of marks on paper. A CAD model represents a sequence of logical operations that

captures user intent. Playing back this history allows both understanding of how the

model was designed, and opportunity to modify the model from an earlier version of

it. Similarly, skWiki’s data representation allows an understanding of the designer’s

thought process, especially for early conceptual sketches. Additionally, it allows for

a semantic grouping of chronological operations on a particular sketch. A sketch can

thus be “rolled back” to an earlier version, and can be modified to take the idea

in a different direction, thus increasing the potential for both lateral and vertical

transformations. This potential is increased by the path viewer, through which a

designer has access to every version of every sketch created by their teammates.

Designers have been described as “both doodlers, by virtue of their sketches, as

well as hunters and gatherers. . . made evident by the types of paraphernalia that

they collect for inspiration and reference” [9, p.186]. Designers take inspiration from

the world around them, from analogies in nature to in mechanisms and products in

different domains. The design notebook is the main implement of such a hunter-

gatherer. In today’s networked world, skWiki, running on a digital design notebook

such as the tablet used in this study, becomes a powerful tool for accumulating and

sharing new ideas through images, text, and sketches.

Further, the path viewer provides a representation of collaboration (aspect A3), or

an overview of the team’s activity. Group awareness has been a key research area in

computer-supported collaborative work (CSCW), and skWiki’s path viewer provides

a non-intrusive, effective way for each team member to view their team’s ideas as well
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as progress. By assigning roles in skWiki, this awareness can be tweaked to either a

WYSIWYS (what you see is what I see) or a WYSINWIS (what you see is not what

I see) system, based on the demands of any given project [101].

4.4.2 Interpreting skWiki as a Research Tool

In this study, we were able to identify the sequence of the sketches and classify the

different transformations that occurred, chiefly by playing back the sequence of activ-

ities and observing the connections between sketches and participants using the path

viewer. The path viewer explicitly indicates the connections between sketches through

its branching and continuous commit connections, and implicitly indicates the less

tangible connections by allowing the researcher to view the sequence of sketches and

compare the contents to determine possible origins of an idea. Additionally, through

skWiki’s aspects of storage and retrieval (A1), coupled with its data atomicity (A2),

and capture of user intent (A4), a researcher can look deeper into the process of

sketching to understand the designer’s thought process

Schmidt [102] discusses research questions for CSCW to focus on, such as identi-

fying the signals and cues an actor relies on when observing team activity, and the

aspects of group awareness that are monitored actively in order to make sense of the

surrounding (team) activity. skWiki thus doubles as a powerful research tool, allow-

ing the researcher to collect data unobtrusively, and observe forms of collaboration

among teams, whether they are synchronous, asynchronous, collocated or distributed.

4.5 Conclusions

In this chapter, we presented a brief overview of skWiki, and two studies for

evaluating the operations enabled by the tool. In the lower-level study using the C-

sketch framework, we saw that skWiki’s paths model allowed participants access to

all sketches at the end of each round, increasing the potential to create new variations

of existing designs, without the danger of feature saturation setting in.
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We embedded our longitudinal case study of skWiki in a design project in an un-

dergraduate toy design course. Operations performed by the team were classified into

five categories. We used Goel’s categories of lateral and vertical transformation as a

theoretical basis to understand these operations, and showed how skWiki increased

the potential of such transformations, in turn increasing the potential for creative

collaboration. We further illustrated the use of skWiki as a research tool for observ-

ing team collaboration, and for understanding explicit and implicit transfer of ideas

between team members.

We obtained positive feedback from the team for skWiki being an effective and fun

tool for collaboration. Suggestions from the team for further improvement included

a more heterogeneous communication medium such as audio and video, in addition

to text and sketches, and for a “digital whiteboard” allowing multiple designers to

work simultaneously on a sketch. This is in line with findings by Purcell et al. [24],

who showed that designers communicate by means of sketches, speech and actions,

seamlessly switching between media to communicate with other designers. This form

of “talking sketches” [100] can be enabled for distributed, or even asynchronous teams

by incorporating such multimedia options for communication, akin to tagging sketches

with gestures and speech. Observations from such studies will be used to augment

the collaborative concept design process to enable higher-level operations such as

enabling consensus among team members, collaborative tagging [103], and tag-based

selection and filtering of paths.

We also discussed how skWiki’s path viewer can be used as a research tool. How-

ever, to be an effective research tool, the path viewer visualization provided by skWiki

needs to be embedded in context with other data collected, such as video recordings

of the team and server log data of team activity.

It is worth noting that while skWiki allows both branching and merging, we

observed that participants in both studies detailed in this chapter used only the

branch operation. This is chiefly because the merging operation required a level of

planning from the user: the current implementation of skWiki allows the merging of
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canvases (similar to layers in CAD and image editing tools) and not the sketches or

strokes themselves. Thus to be able to select parts of sketches to merge, they have to

have been drawn on a separate canvas. This form of prescriptive interaction was seen

as intrusive, leading to participants avoiding the merge operation altogether. In the

next chapter, we study, using a simplified interface, the physical and cognitive aspects

of selection and transformation operations that are required to merge sketches.
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5. A CLOSER LOOK AT MERGING SKETCHES

In the preceding chapter, we have seen how collaborative design commonly involves

multiple designers concurrently working on new sketches in convergent and divergent

processes [4, 89]. In divergent phases, designers use creative thinking to create en-

tirely new concepts, consequently expanding the solution space, whereas in convergent

phases, designers use analytical thinking to evaluate and select the most promising

ideas. Both these design processes are often associated with close coupling between

participants [28, 104]: designers draw upon their own (and each other’s) sketches in

the divergent phases, and evaluate these sketches in the convergent phase.

Fixation—“the inability to see alternative solutions” [105, p. 231]—is often seen

as a common roadblock in divergent thinking. There are several techniques to help

delay fixation. Zahner et al.’s abstraction and re-representation technique [105], for

instance, involves designers who are given specific solutions, and are asked to first

abstract them to a more general solution, and then apply them to a different domain.

More common techniques include concept maps [7], which help designers form new

connections between ideas, or SCAMPER [20], which provides the designer with

an array of transformations that can be applied to a given idea. Such techniques

are intended to help with reframing the design problem and use existing designs

to generate new ones. We also saw in the preceding chapter how these techniques

have been adapted to sketching with methods such as C-Sketch [27] or the gallery

method [3], where designers sketch on existing ideas to transform, extend, or enhance

them. The extension is natural, as sketches serve as the designer’s thinking medium:

they externalize the designer’s thought [106, 107], provide a way for the designer to

discover spatial features and relations [108], and provide underlying shapes for the

designer to change and transform [33]. Sketching also aids transformations of ideas at

a cognitive level, what Goel [17] calls lateral transformations—changing the idea into
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a different, but related idea—or vertical transformations—creating a newer version

of the same idea.

Reinterpreting a sketch by regrouping its constituent components is another way

to battle fixation. Suwa et al. [108], for instance, show through their studies with

architects how perceptual reorganization of components of sketches led to new in-

terpretations. This chapter focuses on studying the physical act of regrouping these

sketches by taking their components and merging them to represent alternative or

new ideas, as well as the cognitive aspects of changing the function and/or context of

these components.

In a traditional paper-based design scenario, the merge operation may be per-

formed in any number of ways, ranging from drawing a new sketch from scratch while

incorporating themes from both source sketches, to to physically cutting and pasting

together the new sketch from its source materials using scissors and glue. In a digital

scenario, on the other hand, merging simply involves selection and composition of

objects using digital “cut”, “copy”, and “paste” operations. In other words, digital

settings do not require completely redrawing or physically destroying the source ma-

terials, and is thus significantly more efficient in terms of time and resources. Despite

this, the merge operation has received scant attention in digital design tools, and

little is known of best practices for designing the interface, interaction, and methods

for merging two source sketches into a new sketch. Furthermore, few digital design

tools provide support for merging by re-purposing design elements from the source

sketches into entirely new ideas and concepts in the resulting new sketch.

We remedy this gap in the literature by presenting results from an in-depth quali-

tative user study involving 19 designers combining sequences of two pre-drawn source

sketches into a single output sketch. The study involved the divergent process in two

forms; one where participants were asked to combine the source sketches into an out-

put sketch that incorporated ideas from both, and the other where they were asked to

use elements from both source sketches to create an output sketch with entirely new
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ideas. We compared the qualitative performance for this merge operation in both

phases for paper as well as digital settings.

We tested two digital selection techniques: free-form selection where users could

‘cut’ and use parts of a sketch as they do with paper, and an object-selection technique

that used sketch clustering [109] to support selecting composite sketch elements using

a simple click. Apart from the selection options, the digital setting differed from

the paper setting in two important ways: (a) selecting a part of a sketch did not

remove it from the original sketch, so it was available for selection again, and (b) the

selected part of the sketch could be non-uniformly scaled to both re-interpret and

re-purpose it into the ‘merged sketch’. To better elicit the effect of these differences

from participants, we also made them perform one merge task with paper.

In the same way that sketching, a physically expressed process, acts as an exten-

sion for the designer’s memory, reducing their cognitive load, we sought to understand

the cognitive operations involved in merging these sketches. To this end, we identify

four cognitive operations of reuse, refactor, repurpose, and reinterpret, and suggest

ways in which they support design ideation. We use the merged sketches from our user

study to understand the relation between these cognitive operations and the extent

of exploration of the design space by the participants. Our results give a deeper in-

sight into how these operations aid design exploration, and makes the case for digital

design tools as strong alternatives to traditional paper-based design methods.

5.1 Design Framework: Merging Sketches

We call the operation to combine two1 source sketches A and B into a new re-

sulting sketch C a merge (or “sketch merge”). To understand what happens in the

sketch merge operation, we need to separate the physical aspects of the process from

its cognitive aspects. By physical aspects, we mean the parts of the operation that

are expressed externally by the designer: operations such as select, cut/copy, paste,

1We limit our treatment here to two source sketches, but these ideas should generalize to a higher
number of source sketches.
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rearrange, and compose. By cognitive aspects, we mean the parts of the operations

that occur internally, in the designer’s mind. This involves the designer’s internal rep-

resentation of what the sketches denote: the ideas expressed in the source sketches, or

newer ideas that are formed in the designer’s mind when parts of these source sketches

are isolated or combined. These two aspects of merging are intricately connected:

sketches are external representations of the designer’s evolving thought process [106],

and identifying these aspects may help understand how they come together.

5.1.1 Physical Operations in Merging

The physical operations that come into play when merging sketches can be cate-

gorized into two kinds of processes:

• Selection: This is act pf selecting a part or parts of source sketches.

• Transformation: Translating, rotating, and scaling the selected parts to form

the merged sketch.

5.1.1.1 Selection

At a physical level, selection involves identifying and demarcating areas of interest

from the source sketches. We identify two forms of sketch selection:

• Freeform selection: Commonly known as “lasso select” in existing drawing

and photo manipulation editors, this requires the marking of a freeform shape

depicting the area of interest, and selecting everything that lies in this area.

• Object selection: While freeform selection is a natural choice for most image-

based media, sketches are also collections of strokes, and it makes sense to have

a selection mechanism that is aware of this. This idea is not new: drafting

applications allow the selection and manipulation of lines or groups of lines,

which the user can select directly, or by chaining connected lines/curves. This

allows selecting coherent “objects” inferred in the sketch.
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selection

object 

selection

expanding the selection

Figure 5.1. The two selection types considered for this study. The
freeform selection type is an area-based selection commonly seen in
image editors and other graphical applications. The object selection
type is a stroke-based selection that extends the initial selection of one
stroke to include other temporally adjacent strokes. Both methods
have their advantages: freeform selection frees the user from having
to select complete shapes. Object selection allows the selection of a
shape from nested or interlocked shapes as long as the shape consists
of temporally adjacent strokes. Figure 5.2 details this mechanism.

These two forms are shown in Figure 5.1. To implement object selection, we need

to overcome the problem that sketches consist of unorganized strokes, not discrete

objects. Contrast this with traditional vector editors, where illustrations are created

using geometric shapes and paths. To identify higher-level entities, we use an agglom-

erative stroke clustering method based on the time and order in which the strokes

were created [109]. The strokes in a sketch are thus combined into clusters based on

a proximity measure and temporal order, and these clusters (a group of strokes) are

further combined with other strokes or clusters using the same approach. This recur-

sively builds a tree-like structure (a dendrogram) representing the clustered sketch

(stroke) histories (as illustrated in Figure 5.2. Note that the root cluster on this tree

represents the entire sketch, while the leaves represent individual strokes. Selecting

a particular stroke allows us to expand the selection using the cluster hierarchy (by
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Figure 5.2. An illustration of the sketch history-based clustering
technique for grouping strokes into objects, and the expansion of se-
lection by traversing to the parent nodes of a stroke (cluster) in the
tree layout.

moving to the closest parent in the tree); by giving users control over this, they can

smoothly expand or shrink their selection with little effort.

This is just one automated clustering algorithm that can used for this purpose;

there are many other alternatives from the data analytics domain including k-means

and k-d trees. Our approach uses agglomerative clustering as it creates a hierarchy

of stroke clusters, which is amenable to the process of “expanding” a stroke selection.

Additionally, while we use temporal order to cluster, the technique can be changed to

use spatial proximity, or a combination of both: selection and expansion will still be

possible. Overall, selecting a specific sketch part that conceptually belongs together—

such as a wheel on a car, a person in a room, or a part in a schematic—becomes

significantly more efficient than freeform selection.

5.1.1.2 Transformation

Once the designer has selected a visual element to transfer from one of the source

sketches to the resulting sketch, they may want to transform the element in the final
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Figure 5.3. An illustration of the different transformations and their
role in changing what the selected components represent. The com-
ponents, selected from the sketch on the top left, are numbered to
to keep track of them through the transformations. Parts of sketches
that undergo at least one transformation at a given stage are colored
blue. The final composed sketch is shown on the bottom left.

result. Examples include changing the location, size, or orientation of a selected

element in the composition. To accommodate this, the merge operation incorporates

translation, freeform scaling (with non-fixed aspect ratios), and rotation for each

individual element. An example of the combined use of these transformations is

shown in Figure 5.3.

In divergent design phases, selection is used to physically embody how a concept

is distanced from its surrounding context, while transformation is used to increase

this distance.

5.1.2 Cognitive Operations in Merging

Cognitive techniques such as abstraction and re-representation [105] or SCAM-

PER [20] provide the designer with the means to overcome or delay fixation. The

act of merging components from two sketches to represent a new idea has a cognitive

side that is aided by the above physical aspects of selection and transformation. We
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Figure 5.4. Merging as different cognitive processes. The illustration
shows the ways in which the change or constancy of context and/or
function creates different results in the merged sketch. In “reuse” op-
erations, both context and function of merged components are similar
to what they were in the source sketches. They result in ideas very
similar to the source sketches. “Reinterpret” operations, where both
the context and functions of merged components are changed, result
in ideas that are very different from the source sketches. The “repur-
pose” and “refactor” operations result in ideas that are somewhere in
between. The components used from the source sketches on the left
are indicated by color in the four merges on the right.

generalize these cognitive aspects to two: function and context. Function is the role

a component plays in the original or source sketch, whereas context is the domain in

which the component or its parent sketch exists. For example, in a sketch of a car, the

tire performs the function of supporting the car, and providing traction; its context

is the automotive, or, more generally, the transportation domain. When a designer

performs a merge, components that go into the merged sketch can either have the

same or different function as in the source sketch, and exists in the same or different

context as in the source.

Based on these possibilities, we identify four cognitive operations that can occur

when a sketch C is created by merging elements from sketches A and B.

• Reuse: The use of a component from A or B in C where both the function

and the context of this component in C is the same as in the source sketch.
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This is akin to the use of morphological matrices [110, p. 204] in conceptual

design, where a product’s functions are broken down into sub-functions, multiple

concepts generated for each sub-function, and then new product designs are

generated through various combinations of these concepts. In each design, a

particular concept, if selected, always performs the same function. Thus, the

reuse operation is often seen when generating alternatives for a design problem

by choosing parts of existing design solutions. This is illustrated in Figure 5.4

as the use of the tank tread on the undercarriage of the helicopter. The tread

performs the same function as it did for the tank. Cognitively, this can be

seen as a representation of Goel’s lateral transformation [17], where a sketch

undergoes a modification to a version that is similar to, yet distinct from, its

earlier version.

• Refactor: In computer science, refactoring is the process of reorganizing a pro-

gram’s internal structure without altering its external behavior. In our context,

we interpret the term slightly differently, as the use of a component from A or B

such that it performs the same function in C as it did in the source sketch, but

in a different context. The sketch component thus performs the same function,

but can be seen as having a different structure. This is illustrated in Figure 5.4

by the use of the tank’s armored body as the fuselage of the helicopter. It

performs a similar function as it did in the tank (protect and house the pi-

lot/driver), but in this case, it is now an armor-plated fuselage. This operation

can thus help in exploring the design space further by abstracting the function

performed by a part of the sketch.

• Repurpose: Here a component from sketches A or B is used in C in a way that

it occupies the same context or domain as the original sketch, but performs a

different function. This operation often uses the form of a component of a sketch

to replace a different component. For example, in Figure 5.4, the outline of the

tank tread is repurposed to now play the role of the fuselage of the helicopter.
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• Reinterpret: Finally, when an element from A or B is used in the merged

sketch C such that it performs a different function in a different context from

the source sketches, we term the operation a reinterpretation of that component.

This operation could be particularly useful in the early stages of ideation, as

it creates results that are the most different from the source sketches, thus

helping to explore the design space better. In the example shown in Figure 5.4,

components of the tank and the helicopter are completely reinterpreted to create

a pair of scissors. Our definition of reinterpretation is derived from Suwa et

al.’s [108] perceptual reorganization, where regrouping parts of sketches provides

new interpretations.

5.1.3 Paper vs. Digital Media

In traditional design settings conducted using paper, merging two source sketches

often happens in many different ways, at different levels of abstraction:

• Recreate from scratch: Here the designer merely uses the source sketches as

inspiration when creating a new sketch that combines the original ideas;

• Trace: The designer reproduces elements from the source sketches by tracing

over them using tracing paper; and

• Cut and paste: Source sketches (or copies) are used directly in producing the

resulting sketch by physically cutting out elements and pasting them together.

Note that when sketching on paper, transforming the selected parts of the sketch

is not trivial. Paper allows for only rotation and translation, but for scale, it would

need additional mechanisms such as pantographs (for tracing a larger shape), or

photocopiers (for creating a larger sketch to cut out). The recreate from scratch

option does allow for all transformations, but it depends on the sketching skill of the

designer. Combinations of these methods, as well as entirely different methods than
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Interface for Lasso Select Interface for Object Select

transform/compose

area

source sketches

transform/compose

area

source sketches

Figure 5.5. The interfaces of the applications used for the freeform
and object select methods. The two source sketches are placed in
juxtaposition to the “merge area”, where the selected sketch segments
can be placed, transformed, and composed for the merged sketch.

these, are certainly possible, but at a conceptual level would still involve the same

physical and cognitive operations as detailed earlier in this section.

Digital sketching platforms have both strengths and weaknesses compared to tra-

ditional paper-based sketching [38,98]; one of the oft-cited strengths is the possibility

to effortlessly reproduce a sketch without consuming the original. Despite this, few

existing collaborative sketching platforms provide explicit support for sketch merging

beyond allowing designers to recreate existing sketches into a new sketch.

While recreating a sketch may sometimes be exactly what the designer wants,

the digital medium allows us to better support situations where parts of the original

sketches are reproduced in the resulting sketch. We performed a study of such merging

operations under two different design situations, in order to understand the physical

and cognitive operations involved, and the role of the medium in supporting these

operations. This study is detailed in the following section.
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5.2 Study Methods

In the previous section, we outlined the physical and cognitive operations of merg-

ing sketches, with possible implications on the outcome. To understand how these

operations affect the results, we conducted our study in three stages:

• User Study: We examined how designers merged two sketches under condi-

tions that required them to use all the physical and cognitive operations dis-

cussed in the design section. The goal of this study was to understand how

designers perform merging under different design scenarios when using different

tools, and to obtain a set of merged sketches under controlled conditions.

• Crowdsourced Survey: We then performed a crowdsourced survey where

respondents were shown a set of sketches created from the same source sketches

by participants using different techniques. They were asked to choose sketches

that were (a) the most different from the source sketches, and (b) represented

the most original idea.

• Coding of Cognitive Operations: Having defined the four cognitive oper-

ations involved in merging, we identified, in each sketch, the number of times

each operation occurred uniquely in each sketch.

5.2.1 User Study

In the previous section, we had identified the cognitive operations involved in

merging, namely reuse to explore the design space close to the source sketches, rein-

terpret to explore the design space furthest from the source sketches, and refactor

and repurpose to explore the space that lies in between. We split the user study into

two stages to address these explorations: (1) a “functional” merge, where the source

sketches are possible solutions to the same design problem, and (2) an “exploratory”

merge, where the source sketches are unrelated to each other. In the case of the

functional merge, the design task was to generate a merged sketch that addresses
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the same design problem as the source sketches, while in the case of the exploratory

merge, the design task was to generate a merged sketch that is completely different

from the source sketches.

5.2.1.1 Participants

We recruited 19 paid participants (4 female, 15 male), 16 of whom were students of

a senior course on toy design, and 3 who were graduate mechanical engineering design

majors. Participants were aged between 21 and 28 years, had normal or corrected-to-

normal vision, and 17 were right-handed, and 13 participants were proficient in using

tablets and styli. All participants had novice to intermediate level skill in sketching

on paper. All demographics were self-reported.

5.2.1.2 Apparatus

We conducted the tablet portions of the experiment on an Samsung Galaxy Note

10.1 2014 edition using the S-Pen with a < 1 mm tip for input. For paper, the

participants were provided with sketches printed on two different colored letter (8.5

× 11 in.) papers along with scissors, glue, and a blank sheet of white letter paper for

the merged version.

5.2.1.3 Tasks

For both stages of this study that were performed on the digital medium—

functional merge and exploratory merge—we asked participants to use both tech-

niques: freeform selection and object selection. We developed an Android applica-

tion for each of these techniques. The visual space on the Android device display

was divided into two main areas corresponding to the physical operations discussed

earlier: a selection view where two source sketches were displayed from which the

participants could select elements, and a transformation view where they could apply
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transformation operations to the selected elements. Participants were free to orient

the tablet or paper to their comfort. The outcome of each merge operation was stored

on the tablet before the participant moved on to the next task. At the end of each

task, the participants’ brief description of their creation was recorded.

In both functional merge and exploratory merge stages, participants performed

tasks using two different merge techniques on digital media (a direct-touch tablet):

freeform selection and object selection. All transformations discussed earlier were

enabled for all the above conditions with standard tools for scaling, translating, and

rotating the selections provided to the participants.

After each stage, the participants answered a series of questions about their expe-

rience with the merge technique for that particular stage. Questions were answered on

a 1–5 Likert scale on aspects such as ease of selection, successful expression of selection

intent, and open-ended questions explored the selection technique and transforma-

tion techniques that were liked or disliked. The participants also conducted one of the

two merge tasks (assigned randomly) on paper using the cut-and-paste with scissors,

paper cutter, and glue.

5.2.1.4 Dataset

We used a total of eight pairs of annotated sketches created by two expert designers

for these tasks. Of these, four pairs were created such that each pair showed two

solutions to the same design problem, for use in the functional merge stage. The

remaining four pairs were created such that each pair showed two sketches that were

completely different and addressed different design problems. These pairs were used

in the exploratory merge stage. These sketches were processed to have similar visual

appearance in terms of the stroke width, colors used, and the view (the sketches are

all perspective views) to avoid the effects of sketch quality on the merge outcome.
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5.2.1.5 Factors

We studied the following factors in the experiment:

• Situation (S) represents the design scenario or stage as described earlier: func-

tional merge and exploratory merge.

• Technique (T) represents the selection technique used in the task: freeform

selection and object selection.

We chose to not study medium (digital vs. paper) as a factor since the goal of

this study is to identify and compare merge techniques for different design tasks on

the digital medium. In other words, the two media are simply not comparable due

to the different workflows involved. However, having a paper-based task expands

our understanding of the benefits of the digital merge techniques compared to the

paper-based merge, which is already known and familiar to participants.

5.2.1.6 Experimental Design

We used a full-factorial within-participants design:

19 participants

× 2 Situation S (functional/exploratory merge)

× 2 Technique T (freeform/object select)

× 2 repetitions (with different source sketches)

152 total trials (8 per participant, training excluded)

This does not include the paper task, which had only one trial. The order of both

situation S and technique T was randomly chosen. For each trial, we collected the

following metadata:

• Selection areas: The proportion of each of the source sketches retained in the

merged outcome.
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• Duration: While each participant was required to spend 5 minutes on each

task, this was not strictly implemented, to allow the participant to finish a task

if they were close to completion. The actual time taken was recorded.

• Number of selection operations: The number of discrete selections that

made it from the selection area to the transformation area of the interface.

5.2.1.7 Procedure

The participants were provided with an introduction to the purpose of the study

and the data to be recorded. They filled out an initial survey on their background

and their experience with sketching on tablets and design. We then provided a set

of instructions for the first stage of tasks to be performed (functional or exploratory

merge) and asked them to practice using the assigned selection technique and the

transformation operations before the tasks began. Participant training time ranged

from 3 to 5 minutes per technique.

This was followed by a set of four merge tasks with two merge techniques for the

assigned stage of the task (functional or exploratory merge). The participants were

given 5 minutes to complete each task. We determined this time limit by analyzing the

level of detail in each set of sketches through a discussion with the expert designers

who created the original sketches; the purpose was to pick a short period of time

amenable to quick ideation.

Prior to each task, the source sketches were briefly explained and then the partic-

ipants were asked to infer more detail from the annotations. The participants were

told to ask the administrator any question about the sketches during the session if

necessary. At the end of each task, the participants were asked to explain the purpose

and idea behind their merged outcome. After completing the survey forms for this

stage, the participants moved to the next stage, repeating the above procedure

Following this, the participants moved to the paper-based task, during which the

procedure for merging sketches on paper using cutting and pasting was explained to
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them. They were given five minutes to finish their composition. The administrator

was present throughout the session to monitor and answer any questions regarding

the sketches if the annotations are not clear enough. The sessions were also video

recorded. A typical study session lasted 70 minutes.

5.2.2 Crowdsourced Evaluation

Keeping in mind our original goal of understanding the effect of the selection

technique on the final outcome of the merge, we decided to evaluate the participant-

generated ideas on their originality. Additionally, to determine the extent of how

different the outcomes from the exploratory merge tasks were from the source sketches,

we also decided to evaluate the merged sketches on their dissimilarity from the source.

We collected the eight sets of merged sketches and performed a crowdsourced sur-

vey. Each set contained 21 merged sketches from 19 participants (19 digital merges

and 2 paper merges for every pair of source sketches). Respondents to the crowd-

sourced survey were presented with a total of 12 questions. Eight questions related

to the originality of the merges from all eight pairs of source sketches the participants

used, and the remaining four questions were specific to the four pairs used in the

exploratory merge sketches.

Each question had the same format: the two source sketches were shown, along

with their descriptions, and 4 options were presented, requiring the respondent to

select the most original sketch (or the one most different from the source sketch, as

the case may be) from the given choices. These 4 options were generated randomly

for each respondent from the pool of 21 merged sketches generated by participants

of the user study. The limit of 4 choices were imposed to make the task of choosing

easier for the respondent. With enough participants, the randomization would ensure

that each merged sketch received sufficient representation. The options shown to each

respondent and their choice were both recorded.
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Respondents were also required to briefly explain the rationale for their choice

for each question in a text field provided. This also served as a means for weeding

out spurious responses: if a rationale was not provided, the corresponding response

was removed from our evaluation. We received an average of 53 responses for each

question. Based on these responses, we calculated the following score for each sketch:

Mscore =
(#sel) − (#nsel)

(#sel) + (#nsel)
(5.1)

Here #sel is the number of times a particular sketch is selected by the crowd, while

#nsel is the number of times a particular sketch is shown as an option, but not

selected. This normalizes the score for each sketch based on the number of times it

is shown to a respondent.

5.2.3 Coding of Cognitive Operations

As discussed in the design section, we identified four cognitive operations that

are possible when a component from a source sketch is incorporated into the merged

sketch: reuse, refactor, repurpose, and reinterpret. We analyzed each merged sketch,

and used the corresponding participant descriptions to interpret the role of each

component used from the source sketches. Once the role was identified, we coded this

element as an instance of one of the above four cognitive operations. Each merged

sketch could thus have zero or more instances of these four operations. We did this

only for unique roles: e.g., if a component was reused as a wheel 3 times, it still

counted as one instance of reuse. We recorded the number and kind of each cognitive

operation used in each merged sketch. This coding was performed by three of three

of the investigators of the experiment, whose inter-rater reliability was calculated to

be 0.82 (Cronbach’s alpha test).
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5.3 Results

We analyzed participant feedback on their experiences with the different selection

techniques for significant differences, and the scores from the crowdsourced study for

correlations with the number of cognitive operations identified.

5.3.1 Participant Feedback

The participant responses to questions on ease of selection and success of selection

for the selection technique did not follow a normal distribution. We thus conducted

a non-parametric Wilcoxon signed rank test, which showed that for the composite

design merging tasks, participants reported that selecting parts of the sketch using

the freeform select technique was significantly easier (Z = 3.69, p < .001) and more

successful (Z = 2.95, p = .002) than when using the object select technique. The

test also showed that for the “new design” merge tasks, participants considered the

freeform select technique significantly easier to use than the object select technique

in selecting parts of the sketch (Z = 3.01, p = .002). However, participants did not

rate the freeform select technique as significantly more successful in selecting parts

of a sketch than the object select technique (Z = 1.33, p = .19). A comparison with

paper was not performed as each participant used paper only once, and for only one

of the two merge tasks. These results are shown in Figure 5.6.

5.3.2 Crowdsourcing Results and Cognitive Operations

We performed correlation analyses between the scores described in Equation (5.1)

and the number of cognitive operations (reuse, refactor, repurpose, and reinterpret).

Figure 5.7 shows a sample of sketches annotated with these codes. The analyses

revealed no significant correlation between the scores of the sketches created for the

functional merge tasks. Recall that only originality scores were obtained for this

set of sketches. For the sketches created in the exploratory merge tasks, there was
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Figure 5.6. Participant feedback on ease and success for each selec-
tion technique, for each stage of the user study. Freeform performed
significantly higher in all cases except for success in exploratory merge.

a significant negative correlation between the dissimilarity score and the number of

instances of reuse (Pearson’s r = −0.53, p < .001), and a significant positive correla-

tion between the dissimilarity score and the number of instances of reinterpretations

(Pearson’s r = 0.41, p < .001). For these same sketches, there was a negative corre-

lation between the originality score and the number of instances of reuse (Pearson’s

r = −0.23, p = .033), and a significant positive correlation between the originality

score and the number of instances of reinterpretation (Pearson’s r = 0.28, p = .011).

We also conducted a multivariate test to examine participants’ application of

reuse, refactor, repurpose, and reinterpret operations while working on functional

and exploratory merge tasks. The results showed that participants used significantly

greater number of reuse operations (F (1, 157) = 4.28, p = .04) and repurpose oper-

ations (F (1, 157) = 13.71, p < .001) in functional merge tasks than in exploratory

merge tasks. The participants used significantly greater number of reinterpretation

operations for exploratory tasks than function tasks (F (1, 157) = 46.69, p < .001).

Finally, we conducted a correlation test for selection methods and cognitive op-

erations. The results showed that there is significant correlation between selec-
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Brush  stove

(repurpose)

saucepan  saucepan

(reuse)

Brush  brush

(reuse)

Clip wheel  monorail

(refactor)

COOKING POT

MONORAIL CLEANER BOT LUNAR LANDER

SHOE SCRUBBER

Saucepan handle  shoe

(reinterpret)

Brush  landing gear

(repurpose)

Spoon handle  hull

(reinterpret)+

Figure 5.7. A sample set of participant responses to an “exploratory
merge” task. The two sketches to the left were the inputs to the par-
ticipants, and the four sketches within the curly braces were created
by merging components of these two source sketches. The source and
merge sketches are colored post-hoc to better illustrate the compo-
nents that were used in the merge. The labelling of reuse, refactor,
repurpose, and reinterpret were created by the coders based on the
classification detailed in the design section.

tion methods (freeform select, object select) and the repurpose operation (Kendall

τ = −0.17, p = 0.02), suggesting that participants who used the cluster method are

more likely to use repurpose. There was no significant correlation between selection

methods and other types of cognitive operations.

5.4 Discussion

In this section, we first discuss the implications of the physical and cognitive

operations in merging, and then discuss the larger implications of our findings.
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5.4.1 Selection Operations

From the participant feedback summarized in Figure 5.6, it is clear that partici-

pants preferred the freeform select over object select and paper-based cut-and-paste

technique. This is partly due familiarity: the freeform selection technique is standard

in most graphical editing tools. However, 15 participants did report that there were

portions of the sketches they were unable to avoid when they were trying to select

something else. This reflected an inherent nature of the freeform selection technique:

it requires the formation of a closed area, and everything within that area is selected.

As one participant observed, “It was sometimes difficult to exclude internal shapes;

strange lasso patterns were necessary to avoid them.” In most graphical editing ap-

plications, this issue is side-stepped by using layers or selection filters.

Our intent in introducing the object select technique was to study the effect of a

possible alternative that seemed well-suited to sketching applications, where collec-

tions of strokes could be grouped. One participant appreciated the feature: “Some-

times the object select mode has better results. I can select the contour of a sketch

and avoid the things inside for once.” However, most had issues with the technique:

an average of 12 participants reported finding it difficult to select specific parts of the

sketches, while avoiding other parts of the sketches. One participant remarked that

the object-select technique gave him “limited control over what primitives and shapes

I was selecting.” Another participant felt that he was operating blind: “I had no way

of knowing what would be selected next, so I spent most of the time blindly adding

and selecting new starting points to avoid what I did not want.”

These problems stemmed from the distance metric used for the agglomerative clus-

tering of the strokes. In our case, we used the temporal difference between strokes as

the metric, which makes it sensitive to sketching styles. For example, when sketching

out a design, the designer’s tendency is to first sketch out the overall form of the

object, and then adding details to its features iteratively. If a novice designer were

to use a version of the object select method, they may want to select and reuse an
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entire feature, which they will find difficult to do. An expert designer may want to

just select the overall form and then add their own detail to it.

It was clear that the stroke clustering algorithm for the most part did not clus-

ter the strokes the way the participants seemed to mentally “chunk” the strokes.

Waldron and Waldron’s experiment on recall of technical drawings from short-term

memory [111] showed that novice designers recalled drawings in terms of line seg-

ments, intermediate designers recalled in terms of machine components, and experts

in terms of higher-level functional components. This brings forth the more complex

question of whether or not it is possible to cluster the strokes of a sketch in a way

that makes sense to most viewers. Further analysis is needed with different clustering

techniques to determine which approach closely mimics the way designers mentally

chunk parts of sketches.

Recall that participants had only one attempt on using paper-based merge to

perform one of the functional merge or exploratory merge tasks. While this was

not enough for a statistical comparison, doing this task at the end provided them

perspective to comment on the experience. As seen in Figure 5.6, participants liked

the paper-based selection technique more than object select, chiefly because it was

a medium they had grown up to be comfortable with. However, they realized that

the process of selecting (by cutting out) one element of the sketch from paper, other

elements become partly or completely unavailable to them. They also remarked on the

irreversibility of selection: “I did destroy some parts getting to the pieces I wanted”,

“I really wish I could duplicate some of the parts like in the tablet version”, and “no

undo” were comments we received from multiple participants.

5.4.2 Transformation Operations

The transformation operations of translation, rotation, and scaling, were enabled

for the tablet interface using multi-touch gestures. As almost all the participants were

used to these gestures through their familiarity with smartphones and tablets, they
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Figure 5.8. A sample of merged sketches that were developed from
the same two sketches (left) by participants in our study of merging
techniques.

found it easy to perform most of these transformations. However, some had issues

with rotating selected components to specific orientations, especially with smaller

selections. While transformation operations were not an explicitly controlled part of

the study, the paper-based task illustrated the difference: while participants could

translate and rotate paper cutouts with the same ease as their digital counterparts,

they could not scale the parts. One participant noted “. . . it wasn’t as easy as (the)

digital version because I couldn’t copy and scale”. Another participant remarked, “one

issue here is that I cannot scale any of the cut-outs, which resulted in a cartoonish-

looking final piece.”

The role of these transformation operations can be equated to the role of sketching

in ideation: while the activity may be expressed physically, it represents an external-

ization of the designer’s working memory [10]. A small sample of the variety made

possible through transformations is shown in Figure 5.8, where exploratory merge op-

erations of components from a sketch of an automated window-washer and a light-up

keychain were used to generate a wrecking ball, a mortar and pestle, a light-up flute,

and a turtle, among others.
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5.4.3 Cognitive Operations

We had posited while defining the cognitive operations of reuse, refactor, repur-

pose, and reinterpret, that reuse represented an exploration of the space close to

existing designs, and as such is a means to generate alternatives, rather than come up

with original ideas. This is evidenced by the negative correlation between the num-

ber of reuse operations in a sketch and the originality and dissimilarity scores. The

correlation between reuse operations and the functional merge task further supports

this argument. This correlation was observed only for the exploratory merge tasks,

possibly because the nature of the functional merge task itself was not amenable to

a high level of originality: participants were forced to use parts of existing sketches

to create a composite sketch that addressed the same design problem as the original

sketches. Similarly, we had posited that the reinterpret operation represented a reor-

ganization of the designer’s perception of the existing sketch [108]. This is evidenced

by the positive correlation between the dissimilarity and originality scores and the

number of reinterpret operations. Additional support is provided by the significant

correlation between the number of reinterpretations to the exploratory design task.

While significant correlations were not observed for the refactor and repurpose

tasks, we are confident that a more nuanced selection of merge tasks designed to

elicit more varied instances of “lateral transformations” [17] would throw further

light on the relevance of these tasks to design ideation.

5.5 Limitations and Future Work

Our qualitative user study by no means represent an exhaustive exploration of

the design space of merging sketches for creative design. For example, we restricted

the scope of our work to stroke-based sketches as the only form of design output.

While the literature suggests such sketches as the primary communication medium in

collaborative design [32], there are plenty of other media such as text, annotations,

and scrapbooks where our work cannot be applied.
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Our interaction design was guided by discussions with our professional designer

collaborators, and in no way is an attempt to reach an optimal layout, visual repre-

sentation, and workflow. As we mention in our discussion on selection operations, the

object-select technique has the potential to better tune selection operations to how

designers “chunk” sketches. Our next step is to perform a more exhaustive study of

clustering techniques to achieve a grouping that mimics this chunking. For instance,

we are interested in pursuing hybrid sketch summarization methods in our future

work that attempts to combine both temporal and spatial clustering. Finally, given

that sketching is a meaningful way for a designer to engage in a dialog with their

ideas, we intend to study the effects of selection and transformation operations that

suggest new interpretations to the designer. This is perhaps best summed up by

a participant in our study who said, “Although sometime the selection wasn’t your

original idea, it may inspire you with other ideas that would also work.”

5.6 Conclusions

In this chapter, we studied the physical and cognitive operations involved in se-

lecting parts of existing sketches and merging them into a new sketch. In addition

to the physical operations of selection and transformation, we identified the cognitive

operations of reuse, refactor, repurpose and reinterpret. With a view to aid digital

support for early collaborative design, we determined to study the above operations

on a digital medium. We studied selection operations through a freeform selection tool

and an object-select tool that uses a stroke-level aggregation method that combines

strokes based on the temporal order of sketch strokes. To study the different scenarios

of use, we conducted a user study where participants were given a set of design tasks

that involved functional merges where the result addresses the same design problem

as the original sketches, and exploratory merges where the result is completely dif-

ferent in form and function from the source sketches. Though the freeform selection

technique was preferred by participants, we identified problems that can potentially
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be addressed by object selection, with an appropriate clustering metric. We scored

the merged sketches through a crowdsourced survey, and coded each sketch with the

cognitive operations used. The scores from the survey for sketches produced in ex-

ploratory merge tasks were negatively correlated with the number of reuse operations,

and positively correlated with the number of reinterpret operations. This supports

our argument that these cognitive operations determine the extent of exploration of

the design space. Finally, we closed with suggestions on further analyses to study the

selection, transformation, and cognitive operations for merging.
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6. A VISUAL ANALYTICS APPROACH TO UNDERSTAND DESIGN

COLLABORATION

Design as an activity can be interpreted in different ways: as a social practice that

requires interaction between designers [112], as a cognitive process in the form of

a dialogue between the designer and their sketch [106], or as an elicitation of tacit

knowledge by designer [113]. Action, interaction, and communication are essential

components of the designer’s thought process. To understand designer thinking and

the design process, it is necessary to study how designers interact with each other

and their environment.

Such studies, often falling under the broader category of protocol studies involve

recording the design session on video and audio, followed by transcribing, segmenting,

and coding this data. Dinar et al. [15] cover such analyses in their detailed review

of empirical studies of design, including traditional protocol analyses that involve

coding designer utterances and actions. Typically verbal data forms the basis of

such analyses, such as think-aloud protocol analysis where a designer verbalizes her

activities, giving insight into her thought process [14], or latent semantic analyses of

a design team discussion to throw light on coherence between team members [114].

In addition to audio and video data, protocol studies often also involve analysis of

sketches, notes, and other “marks-on-paper” [10, p.269] that are integral to designer

behavior. To designers, sketches function as external memory, or as a medium to

think. To analysts, sketches provide additional information about designer thinking—

as an externalization of thought, and as a log of their thought sequences. Qualitative

analyses of protocol studies—both in-situ and in-vivo—often require making sense of

multimodal data, often with a temporal component. This data can include, but is

not restricted to, audio/video recordings, artifacts created by subjects, or electronic

records of user activity. Qualitative studies of this nature often involve the use of
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Computer-Aided Qualitative Data Analysis Software (CAQDAS). Such software are

suitable for analyzing and coding traditional qualitative analysis data such as video,

transcripts, and documents, but are not flexible enough to accommodate newer forms

of data. These include position and movement data from smartphones or sociometric

sensors, or psychophysiological measurement devices such as electroencephalography.

Analysis of verbal data requires manual transcriptions of participant verbalizations

by transcribers—often lacking domain knowledge—provided with a relevant glossary

of terms. These transcriptions and segmentations then need to be verified by em-

ploying multiple coders and this verification by itself needs to be consistent across

coders. The reliability of a coding process is further compromised and complicated

when one is analyzing, say, a design discussion within a team [115], which involves

audio/video records of the discussion, sketches generated by the team, and other user

log data that is collected. Furthermore, the design researcher may not be the one

coding the data, although they may need to expore the data to identify questions

that need answering. Dinar et al. [15], in their review of 25 years of research in design

theory and methodology, suggest the use of automated data collection and analyses

to process the increasing volume and heterogeneity of data collected in such studies.

In our attempt to address these challenges, we look to the field of visual analytics

for inspiration. Visual analytics (VA) is “the science of analytical reasoning facili-

tated by interactive visual interfaces” [116, p. 4]. Specifically, it focuses on interactive

visual representations that exploit the human ability to spot patterns and anomalies,

while allowing the computer to process large datasets. Information visualization

(Infovis), defined as a “graphical representation of data or concepts” [117, p.2], nat-

urally forms an essential part of VA. Keeping these needs and possibilities in mind,

we present VizScribe, a web-based framework that supports the representation of

multimodal data, including traditional as well as newer forms discussed earlier. The

framework allows analysts to generate appropriate visual representations of any spe-

cific temporal datasets, and link them to the existing video and transcript displays.

VizScribe supports interactive, customizable brushing and linking between different
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data representations, allowing analysts to easily and intuitively explore the data and

interactively code it. Our goal is twofold: (a) to enable the analyst to explore design

study data in context and find patterns and anomalies, and (b) allowing the analyst

to query the data to identify further clues behind these patterns and anomalies.

We performed formative studies with both open and prescribed coding tasks in

order to refine the framework. We then performed a summative study with 10 par-

ticipants who were tasked with analyzing video, transcript, sketch, and sensor data

from a 60-minute design session. Our studies showed that timeline and text views

of the transcript, and the timeline view of sketching activity were the most versa-

tile visualizations, while word cloud visualizations were used as a filter to identify

salient parts of the transcript. VizScribe allowed analysts to orient themselves with

a medium that they found most comfortable—sketches, transcript, or the video of

the design session shown—with little difference in the task outcome or user feedback.

Our studies showed that VizScribe allowed analysts both with and without training

in CAQDAS tools to make sense of given data, enabling them to perform closed- and

open-ended tasks with ease.

In the following sections, we review related work, motivate the need for such a

tool, and detail its design and implementation. We then describe the user studies,

and participant feedback, finally highlighting challenges and future work.

6.1 Design Rationale: Visualizing Protocols

Newell [118, p.1] defines a protocol as “a record of the time sequence of events” that

also includes “continuous verbal behavior of the subject” in the context of problem

solving in a think-aloud setting. These transcript of verbal behaviors are studied,

annotated, and coded by design researchers, in order to form and test hypotheses,

and to answer research questions [66]. Such annotations and codes are created by

first identifying the act, and if possible, identifying the time of occurrence of the act.

The analyst’s challenge is to make sense of multiple time series data or observations,
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by linking them to transcripts of designer verbalizations, video captures of designer

actions, and artifacts such as sketches or prototypes created by the designer.

Our layout design and the interactions afforded by our framework are informed

by these aspects of protocol studies. With the increasing prevalence in the use of

software tools for design and the use of sensors such as accelerometers, gyroscopes,

and bluetooth devices to track collaboration dynamics in teams [119], protocol data

have become richer and more varied. Making sense of these multiple forms of data

thus depends on two major factors: the way in which these datasets are displayed

to the user—the analyst performing the protocol analysis—and the way in which the

user is able to interact with these datasets. Both of these requirements are commonly

encountered when designing Infovis and VA tools and will thus benefit from principles

derived from these fields.

VizScribe is designed essentially as a cohesive collection of coordinated multiple

views [120, p.12]—linked views of related datasets that enable the viewing of the data

from multiple perspectives. The rationale and requirements behind this framework

are detailed in this section.

R1 Spatial Coherence: Visually representing time sequences of events, including

verbal behavior, needs a spatially coherent alignment to make sense of these

sequences. Position is a widely accepted encoding of quantities occurring on a

scale [121], the scale in this case being time. All timeline data pertinent to a

video-recorded protocol study session must thus be presented coherently with

the video timeline.

R2 Multiscale Representation: The substantial data obtained from protocol stud-

ies can benefit from multiple scales of representation: of time, content, and

detail. These allow the user to identify patterns and form meaningful connec-

tions between data. This “overview+detail” approach [122] is a fundamental

requirement of interactive visualizations.



92

R3 Context Awareness: Connections between different representations of data need

to be made evident to the user as needed. For data from protocol studies, this

is especially important in order to provide context. This is also useful when the

analyst is trying to understand if there are patterns of behavior evident in the

coded sets of data.

R4 Interactivity: Making sense of multiple datasets requires fluid interactions with

their representations. These interactions should allow the user to orient them-

selves to data visualizations, focus on specific elements of the visualizations,

and then code the data. Elmqvist et al. [123, p.336] emphasize the importance

of “providing immediate visual feedback on interaction” for both major and

minor interaction events. They also recommend allowing the user to interact

directly with the visual elements.

R5 Extensibility: Given the ever-changing nature of data collected in protocol stud-

ies, such visualizations need to be extendable to accept newer forms of data,

mapped to appropriate visual representations.

6.2 The VizScribe Framework

VizScribe’s design addresses the previously-established requirements of spatial

coherence, multiscale representations, context awareness, interactivity, and extensi-

bility. The two main aspects of this design are the layout—determining how the data

is represented to the user— and interactions—determining how the user explores the

data. We detail both these aspects here.

6.2.1 Layout

VizScribe’s layout is divided into two main sections, shown in Figure 6.1:

• A temporal view, where all time-series data is shown in congruence with the

video of the design session being studied, and
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Figure 6.1. A screenshot of VizScribe. The application runs on a
web browser, with video, timestamped transcript, user log file, and
associated images uploaded to a server. The interface displays this
data in the form of timeline-based views, such as video progress, tran-
script visualization, and sketch timeline. Interactive views such as a
word cloud and the transcript provides the user with an “anchor”
for navigation. The user can jump to a specific part of the video by
clicking the transcript, and can select a line to assign it a specific
code. These codes are interactively defined, and the “coded timeline”
updates dynamically as the user continues coding.

• A transcript view where the transcript and other transcript-related data includ-

ing word frequencies and codes are shown.

6.2.1.1 Temporal View

Video data forms the central reference of this view, providing context to any of the

other forms of temporal data. Visual representations of time-sequenced data should

be designed to answer the question of “what was happening when. . . ?”, by providing
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a means to align all temporal data such that it provides context to the analyst. The

temporal view pane thus includes a video playback interface, with time encoded as

a progress bar spanning the width of the pane. All timeline data visualizations are

stacked under the video interface. They are scaled to, and aligned with the video

progress bar, providing spatial coherence (requirement R1).

The temporal view features an event-level interpretation of protocols, including

a timeline representation of the transcript. Our visual encoding of these events is

inspired partly from temporal sequencing visualizations by Isenberg et al. [124]. The

transcript is encoded as a series of thin vertical marks as shown in Figure 6.1, an-

notated as the “transcript” timeline visualizations. Each horizontal strip of marks

represent utterances of one speaker, identified in the transcript file. Multiple speakers

or subjects are color-coded accordingly across visualizations based on Harrower’s [125]

qualitative scheme. This color coding is consistent across timelines, as seen in the

figure. In the data used for this figure, sketching is performed on digital tablets and

shared among users, allowing sketching activity to be logged. The visualization of

this sketching activity is similar to the transcript timeline, with added lines denoting

the modification or extension of previous sketches, inspired from Robinson et al. [126]

and Zhao et al. [98].

This timeline visualization is also designed to be extensible, wherein the design

researcher, with some programming background, can adapt existing new timeline

visualization panels, or add new panels of their own to suit their requirements (R5).

For example, the speech participation data and accelerometer data collected from

personal sociometric devices [16] on each subject is visualized in the interface shown

in Figure 6.1. This extensibility is explained in detail in Section 6.3. Finally, any

coding performed on the transcript is also reflected in the timeline view, color-coded

according to the user-defined codes. All of the above timeline visualizations are

overlaid with a video progress indicator (Figure 6.1), visually linking them to the

current time in the video.
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6.2.1.2 Transcript View

The transcript view shows an interactive view of the transcript with corresponding

text visualizations and annotations. Color-coded speaker identifiers provide a visual

link to the corresponding timeline visualizations. In addition, within the transcript

view, a word cloud view is generated from the complete text of the transcript after

stop word removal. The words are scaled in proportion to the frequency of their oc-

currence in the text, helping identify recurring terms in the transcript. The transcript

timeline view, text view, and word cloud together present multiple resolutions to view

participant utterances within the transcript view (R2). Finally, a “code view” section

within the transcript view allows the researcher to define and edit codes. A hierar-

chical code definition is enabled through tabbed entries in the field, thus supporting

open coding. The code view is color-coded as well, and any transcript assigned to a

particular code can be identified through these colors (R3).

Each visualization embedded in these views is linked to related visualizations,

shown implicitly through color and position, and identified explicitly through user

interactions. These interactions are described in detail in the following section.

6.2.2 User Interactions

Fluidity of interaction and directness with which the user can manipulate the data

representations separate an effective VA system from an ineffective one. Guidelines

for designing such interactions have been determined with respect to mapping user

intent [127] as well as fluidity of interactions [123]. The interactions designed into

VizScribe follow requirement R4, described in detail below:

• Orient: This is the act of the user familiarizing themselves with the data repre-

sentations without explicitly changing its state. We map such actions to hover

events: the dwelling of the mouse pointer on any element of the visualization

to “raise the attention of the computer as a dialog partner” [128, p.561].
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• Focus: This is the act of the user focusing their attention on one element on the

data representations. We map such actions to “selection” events (mouse click

and associated interactions) that change the state of the visualization.

• Code: This is the act of the user defining a code—a category of behavior or

utterance—and/or assigning that code to a part of the transcript.

Orient Focus Code

Hover over visualized 

items to identify 

connections

Investigate connections 

by filters or detail views

Categorize items of 

interest that follow a 

pattern

Figure 6.2. The flow of analysis designed into VizScribe. The user
initially orients themselves to the various visualizations, using hover
operations to explore connections. They then focus on items of inter-
est, and finally begin coding these items into categories. The resulting
coded visualizations are then explored for further insight into the data.

The user’s process of analyzing the visualized datasets involve moving from one

of the above acts to the other, as depicted in Figure 6.2.

6.2.2.1 Orient

Figure 6.3 shows some of the ways in which users can orient themselves to the data.

Hovering on a line of the transcript highlights the corresponding mark in the timeline

representation of the transcript, and vice versa. Similarly, hovering on a mark in the

coded timeline view also highlights the corresponding line on the transcript. Hovering

on a word in the word cloud highlights all the lines on which the word occurs, and

shows a filtered view of these words in the timeline view (Figure 6.3(B)). Hovering

on the sketch timeline view described in Section 6.2.1.1 display thumbnails of the

corresponding sketches (Figure 6.3(C)).
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C. Sketch log view links to thumbnail of sketch

A. Interaction with transcript timeline view links with transcript text view

B. Interaction with word cloud links with transcript timeline and text views

D. Coded timeline links to text view

Figure 6.3. Various forms of brushing and linking used in the frame-
work, to facilitate the envisioned orient and focus tasks. (A) shows
the transcript text on the right, linked to a time-sequence representa-
tion of utterance “events” color-coded by speaker ID. Hovering on an
element in the time-sequence view highlights the corresponding text in
the transcript view, and vice versa. (B) shows similar interactive link-
ing, but this time, hovering on a word in the word cloud shows all its
occurrences in the time-sequence and text views. (C) shows the sketch
log view, where each “event” represents a sketch save operation. A
hover event on this view shows a thumbnail of the saved sketch. The
interactions in (D) are similar to A, except the time-sequence view
shows all utterance events assigned to a particular user-defined code.

These interactions provide a means to ensure that the user is not overwhelmed

with the multiple data representations. They also allow the user a means of checking

if they are at a point of interest in the dataset, before performing an overt interaction

to focus on that point for a closer examination.
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6.2.2.2 Focus

In protocol studies, context is one of the main relations that needs to be examined.

Yi et al. [127] describe the act of “selection” in Infovis as marking a data item of

interest to keep track of it. Selecting an item in the temporal view has the effect of

connecting this element to the video timeline, by skipping the video to the timestamp

corresponding to the visualized element, to provide context. The timeline indicator

on all other temporal views also skip to this timestamp, providing a visual cue of other

temporal co-occurrences. Correspondingly, the transcript view scrolls to a participant

utterance closest to this time, highlighting what was said close to the instant of

interest.

In the transcript view, selecting any word from the word cloud persistently high-

lights all corresponding lines in the text and timeline view of the transcript. This

allows the user to scroll around on the transcript, or skip to the timestamps of interest

in the video to examine the data for patterns. Selecting a line on the transcript, when

done through a keyboard combination, skips the video to the timestamp correspond-

ing to that line, allowing the user to view any activity of interest occurring around

the time. It also allows the user to check for any temporally co-occurring item of

interest in the timeline visualizations.

Such interactions also allow for the filtering and details-on-demand tasks speci-

fied by Shneiderman [122]. Filtering is the removal or de-emphasis of uninteresting

items, allowing users to focus on their interests. Details-on-demand refers to obtain-

ing details of a particular selection, usually displayed on separate pop-up windows.

In VizScribe, filtering is achieved in several ways: selecting a block of text in the

transcript updates the word cloud to contain words from only the selected block.

This filtering is extended to speakers and coded sections of the transcript: selecting

a speaker (with a keyboard shortcut) on the transcript timeline, updates the word

cloud to only show words spoken by that speaker, while selecting a code from the

coded timeline view updates the word cloud in the same way. VizScribe has two forms
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Figure 6.4. Coding in VizScribe and sample codes generated by
participants from our formative studies. The screen captures from
VizScribe on the left show the code definition and code assignment.
The hierarchical codes on the right were defined by the participants
(P1 & P2) in the formative study. Though using the same dataset for
the coding task, the participants produced very diverse codes, based
on their research backgrounds (curriculum development vs. design).

of details-on-demand tasks: selecting a word in the word cloud (through a keyboard

shortcut) generates a keyword in context view showing text immediately preceding

and succeeding every occurrence of that word, allowing the user to identify patterns

in the context of utterance of that word. A similar selection of an item in the sketch

activity timeline shows a larger view of the sketch in a separate window, allowing the

user to examine its details.

6.2.2.3 Code

Typically, this data exploration is followed by the categorization of utterances and

behavior, and coding or annotating these with the identified categories. VizScribe is

provided with a text-entry field for determining such code. Hierarchies of code are

encoded by the user through the use of tabbed indentations in the text entry. Once a
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code is defined, they are assigned to a selected block of text through a context menu.

A unique color for each code allows the coded transcript text to be highlighted on

demand, as explained in Section 6.2.2.2. At any stage, the coded transcript can be

exported as a comma-separated value (CSV) file for use with other tools. Figure 6.4

shows the coding process and sample codes created by two participants in our for-

mative studies. The diversity of the code generated and the hierarchies formed show

how VizScribe supports open, axial coding practices.

6.3 Implementation

The introduction of visualization libraries such as D3.js [129] has resulted in the

web browser emerging as an appropriate platform for Infovis, for both collaboration

and dissemination. We chose to implement VizScribe as a web-based framework, with

the data uploaded and stored at the server, and then processed and visualized at the

client end. This implementation has the added advantages of platform independence,

minimal installation requirements, and for extension to a collaborative VA framework.

The application is hosted from a Node.js1 server. Design activity data can be

uploaded to this server by an analyst using VizScribe to create a coding session. The

data is cached and hosted for all client web browsers running the VizScribe interface.

Almost all data processing into structural and graphical elements for the visualizations

occurs at the client end. All visualization elements in VizScribe have been developed

using HTML5 and JavaScript, with the visualizations generated primarily using the

D3 library. The video is rendered using video.js2, an open-source web-based player.

The data processing pipeline is shown in Figure 6.5. Input data is first uploaded to

the server in the form of video and a transcript file, with additional time-stamped data

including, but not restricted to sketch logs and corresponding image files of sketches,

instrumentation logs and activity logs. While it is essential that the transcript file

includes timestamps, speaker identifiers for each line of spoken text are optional. The

1http://nodejs.org/
2http://videojs.com
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Figure 6.5. Visualization pipeline used in the VizScribe framework.
The standard inputs (required) are in the form of a video and a times-
tamped transcript. The VizScribe web application generates a default
timeline and word cloud visualization for the transcript. Predefined
code “templates” cater to other timestamped code, where the re-
searcher with some programming know-how, can iteratively customize
these templates to explore different visualization forms and ways to
link to the transcript and video. Once the visualizations are final-
ized, the qualitative coder can take over, coding the transcript and
exporting the coded data to a comma-separated value (csv) file.

current data import requires transcripts to be in a comma-separated value (.CSV)

format, but is extensible to include other formats such as the SubRip (.SRT) format

or closed captioning formats.

All log files, including sketching activity logs, need to have timestamped entries,

and corresponding references to additional media where applicable, such as sketches

or images. These additional media files, which can include images, vector graphics,

and notes, are uploaded as a single archive. This upload mechanism, showcased with

sketches in Figure 6.5, is extensible to the other media types.

The transcript is reformatted into objects as specified under the Document Object

Model (DOM), ensuring cross-browser compatibility. In addition, this allows each
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Figure 6.6. Extending or customizing a timeline visualization to fit
custom time-series data involves mapping attributes of that data to
a corresponding visual object. VizScribe uses D3 for this purpose,
whose data structure makes this mapping possible. The above figure
illustrates how this extension is possible for three main categories of
data: (a) discrete time series data where data is sampled at inter-
vals, (b) continuous time series data where data is read in a stream,
and (c) multidimensional data with a temporal component, where a
time series visualization needs to be augmented with additional visu-
alizations. For all three categories, the above figure illustrates ways
in which the VizScribe timeline views can be extended to incorpo-
rate such data by mapping data attributes to geometric attributes
of appropriately chosen D3 elements. Hover/click behaviors are then
specified, allowing for interaction with the data.

object of the DOM to be programmatically accessed. VizScribe uses the JQuery

library3 to easily access and manipulate DOM elements, and implement the interactive

linking between objects as discussed in the previous sections.

3http://jquery.com
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Timeline entities are parsed and mapped to attributes of D3 graphical objects,

aligned with the video timeline. We take advantage of D3’s data operator, a format-

agnostic array of values that are linked to visual elements displayed on the screen.

Figure 6.6 shows how a timeline dataset is mapped on to a D3 object. This is

also the means behind VizScribe’s extensibility: new time-series datasets can be

represented in an appropriate visualization by adapting any of the existing time-series

visualization classes. We identify three kinds of data that would typically be used

in protocol studies: discrete time series data measured over intervals of time, such

as speech participation measures, continuous or streaming data such as EEG sensor

readouts, and multi-dimensional data that have temporal components, such as eye-

tracking data or user behavior logs that require additional visualizations in addition

to time-series visualizations. Figure 6.6 illustrates how, in each of the above three

categories, data elements can be mapped to appropriately chosen geometric elements.

Standard event controllers area available that can be changed to determine actions to

perform when hover or select event occurs. Selecting an appropriate visualization is

an iterative process. By experimenting with the various geometric entities available in

D3, appropriate visualizations can be explored. We envision VizScribe to be used by

design researchers with some programming background, so that they may adapt the

visualizations to forms of data pertinent to their work. Using the existing templates,

the data upload page, as well as corresponding client and server-level script templates

can be updated to receive new datasets. In order to aid this extensibility, we will

provide VizScribe as an open-source software.

6.3.1 Collaborative Coding

The idea behind developing VizScribe as a web-based framework was to open up

the possibility of collaborative coding. To implement collaborative coding, we used

the WebSocket protocol4, which provides full-duplex communication channels over a

4https://www.websocket.org/
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1 Collaborator A assigns a code to transcript

2 Collaborator B’s interface updates with A’s 

code timeline
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Figure 6.7. Collaborative coding prototype for VizScribe, imple-
mented using the WebSocket framework to enable real-time updating
between client(s) and server. In the example shown, collaborator B
sees collaborator A’s code timeline, and selects a range of code as-
signments, which are automatically merged into A’s timeline.

a single Transmission Control Protocol (TCP) connection. The WebSocket protocol

allows a live interaction between client(s) and their server. In VizScribe, this allows

the creation of an additional timeline view of a “collaborator code”, that updates in

real-time whenever any one of the clients assigns or unassigns a new code. Selecting

a range of rect elements from the collaborator’s code timeline “merges” the selected

codes into one’s own timeline, as long as a code with the same name is defined in

advance. Figure 6.7 illustrates this real-time update and merging of the code timelines

between two collaborators. While the prototype is implemented for two collaborators,

this protocol can be scaled to include any number of clients, subject to server traffic

and client processing power.
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6.4 Evaluation

The goal of VizScribe is to provide a platform for design researchers to view

and explore coordinated representations of multimodal data that they have collected

through protocol studies. VizScribe also aims to fill a gap that existing CAQDAS

tools do not address: the development of custom visualizations to incorporate emerg-

ing forms of data that are collected to support such studies. However, a comparative

study with an existing CAQDAS tool would not be productive, as these tools are

general-purpose, used for analyzing documents, images and multimedia files. They

would have little support for data such as user logs or sensor data. This was con-

firmed with a pilot study with two practitioners of NVivo, a commercially available

qualitative analysis tool. We thus focused on evaluating VizScribe’s usefulness in

qualitative analyses, and on gauging the effectiveness of the customized interactive

data visualizations that other tools do not provide. We performed two sets of studies.

• Formative evaluation: This study sought to identify weaknesses in the design

and implementation of VizScribe, which helped us understand what forms of

interactive visual representations were useful, ones that were redundant, and

others that needed enhancement. We performed two sets of formative studies:

– Prescribed Coding: We studied how, given the same coding task, partici-

pants navigated the interface.

– Open Coding: We studied how flexible VizScribe was in the hands of two

analysts with diverse analysis goals.

• Summative evaluation: This helped us understand the versatility of the interface

in answering certain closed- and open-ended questions of the kind that interest

design researchers.

For all the above studies, a brief demonstration of VizScribe and its features

was provided to the participants, after which they were allowed as much time as they
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needed to familiarize themselves with the interface. Before both studies are explained,

Section 6.4.1 on context will set up the datasets used for the studies.

6.4.1 Context: The Design Sessions

Given our goal to better understand design processes through various forms of

data collected during the process, we recorded two student teams from a mechani-

cal engineering graduate course on product design. The teams were recorded when

working on a design modification assignment that required the team to first cate-

gorize a given toy according to its “play value” [90], and then modify it to extend

and/or change its play value. The teams used skWiki [98]—made available as open

source5 by its creators—to create, exchange, and modify sketches of their ideas, en-

abling us to log their sketching activity. The sketch log data from skWiki was used

to create a timeline visualization of their sketching activity described earlier in this

document. Both sessions lasted approximately one hour, and were video recorded

with the consent of the participants. One team was also provided with wearable

sociometric sensors [119] to record their speech patterns and movements for the du-

ration of the assignment. We used a 15-minute video segment and sketch data from

the team without sociometric sensors for the formative evaluation, and the complete

60-minute segment and associated data from the team with sociometric sensors for

the summative evaluation. This decision was in accordance with the goals of the

evaluations—with the formative evaluation focusing on studying the efficacy of pro-

viding temporal and transcript views for coding, and the summative evaluation for

understanding high-level user behavior trends.

The formative study was conducted on a Dell Optiplex 760 desktop, running

a Windows 7 operating system. The summative study was conducted on a Lenovo

Y460 laptop, also running Windows 7. In both studies, VizScribe was run on a Google

5https://github.com/karthikbadam/skWiki
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Chrome browser, and displayed on a 20-inch LCD screen. The data was uploaded

and rendered on VizScribe before the start of the experiment.

6.4.2 Formative Study

The formative evaluation of VizScribe was split into two studies as mentioned

earlier: one to understand, given a prescribed coding task, how the participants

navigated the interface, and the other to determine how flexible the interface was to

do a diverse set of open coding tasks. Both studies used the same dataset, mentioned

in Section 6.4.1.

6.4.2.1 Prescribed Coding

We recruited 6 graduate students (5 male, 1 female) as paid participants for this

study. Participants were aged between 27 and 32 years. All participants were ex-

perienced in one of two processes: 3 were communication students, and thus were

experienced in ethnographic studies involving similar coding processes, and 3 were

engineering design students, experienced in design processes. Two of the participants

had prior experience in protocol analysis.

Participants were given 60 minutes to use VizScribe, during which they were

required to familiarize themselves with the data shown on the interface, and identify

and code instances of idea generation, when a subject in the video comes up with an

idea for the toy design, idea extension, when a suggested idea is modified or developed,

and idea critiquing, when feedback is provided to a suggested idea. We asked them

to code segments of the transcripts as such.

At the end of the session, participants were asked to answer a set of questions

eliciting feedback on their experience with the interface. This included both open-

ended questions on their overall experience and feedback, and their evaluation of the

usefulness and ease of use of specific features of VizScribe on a Likert scale.
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6.4.2.2 Open Coding

We recruited two graduate students (both paid) for this task, one male and one

female, aged 29 and 34 years. One of the participants, a curriculum and instruction

student in art education, had prior experience with coding in NVivo, and the other,

a student of mechanical engineering majoring in design, had no prior experience

in coding or protocol analysis. They were asked to use an inductive open coding

technique [130]—which was first explained to the participants—to code and then

categorize their observations. Participants had 60 minutes to perform this coding

task, followed by an open-ended survey where they detailed the coding process they

used, the features they used in VizScribe, and their overall feedback. Our goal was

to evaluate the utility and ease of use of VizScribe in a real-life coding scenario, and

identify challenges that arise in data representation and coding in such scenarios.

6.4.3 Summative Evaluation

The formative studies helped us make further design and implementation refine-

ments described in detail in Section 6.5. We then performed a more detailed study

with tasks that attempted to ask questions with more ecological validity. Summative

qualitative evaluations are useful when the emphasis is on understanding high-level

behavioral trends, and mental models of participant behavior [131]. In addition to

video, transcript, and sketching data, this evaluation used sociometric sensor data

that captured the activity levels (data from the accelerometer sensors), as well as the

speech participation (speaking to listening proportion) of each participant.

We recruited ten paid participants for this study: five male and five female, all

between 23 and 36 years of age. Six were PhD design majors in mechanical engi-

neering, and two (one master’s and one PhD) were engineering education majors.

Of the remaining two, one was a master’s student in computer information technol-

ogy who had a background in teaching undergraduate design courses, and one was

a post-doctoral researcher in educational psychology, focusing on design education.
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Nine of these participants had performed qualitative analysis, ranging from document

analysis, to interview coding, to analyzing videos of participant gestures. Of these,

one had prior experience with CAQDAS tools.

All participants used VizScribe to perform 7 tasks centered around a 60-minute

video of the session explained in Section 6.4.1, The 7 tasks were as follows:

T1 Identify the sketch/sketches that represent the final idea chosen by the team.

T2 Who was the team member that originated the idea that finally evolved into

this final idea? Identify the member, and code the part of the transcript that

refers to the first mention of this idea.

T3 Did the team discuss other ideas before they narrowed down on one final idea?

If so, describe these ideas.

T4 Code the parts of the transcript that you identify as the start and end of the

team’s divergent process (ideation) and the start and end of the team’s conver-

gent process (evaluation and selection).

T5 Using the word cloud, identify themes in each team member’s utterances.

T6 Identify and code three instances with no speech overlap between team mem-

bers, and three instances where there is speech overlap. What behavior differ-

ences can you observe between the two categories?

T7 Using the activity timeline, identify with timestamps three unique instances of

activity or movement, and describe them.

Tasks T1 and T2 have components that can have “correct answers” or answers

that are comparatively less open to interpretation. We used these tasks as “ground

truth” tests, to determine if the VizScribe interface helps the participants glean such

information. Tasks T3 through T7 are more open-ended and were intended to study
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how VizScribe’s representations of the customized datasets are useful in understand-

ing aspects of the presented data that are not immediately apparent from just the

video and the transcript.

6.5 Results and Discussion

Results from formative studies helped identify features that were useful in explor-

ing multimodal data, and features that needed refinement. The summative study

helped understand the different means by which analysts approach design protocol

studies, and the versatility of the various visualizations used in VizScribe in catering

to these different means. The results from both evaluations and their implications

are detailed in this section.

6.5.1 Formative Evaluation and Subsequent Redesign

Participants chiefly liked the way multimodal data was presented, and found it

easy to navigate in the interface. One participant summarized it well: “(VizScribe is

a) useful tool for observing multiple modes of data. I was able to relate the transcript

to actual body language from the video and sketching activity. I liked how I needed

minimal instructions to use the tool. A browser based environment really helped, as I

was familiar with most browser based interactions.”

Participant feedback, obtained both quantitatively on a 5-point Likert scale, and

qualitatively as comments, revealed that the interactive transcript was the most useful

feature of VizScribe (reported by all 6 students). The word cloud was deemed the least

useful (by 4 out of 6 students), partly due to the small size of the data (participants

found it easier to read the transcript of the 15-minute video), and partly due to a

lack of a context for using this visualization. Among the temporal views, the sketch

timeline was deemed intuitive (by 5 out of 6 students), but not relevant, partly because

interactions with the view were not linked to other views at the time of the study,

and partly because of the small size of the data. The coded timeline was the only
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other timeline view for this study, and participants emphasized the need to assign

multiple codes, as well as better granularity (at the word level) of code assignment.

In the open coding study, both participants found it easy and intuitive to create

multiple hierarchies of codes. However, the representation of codes on the transcript

started to become problematic when numerous codes were created. The color-coded

display seemed to become cognitively difficult to process when there were 10–12 col-

ors, one for each code, painted over the transcript. Finally, by comparing the codes

generated by both participants, we found that both viewed the same dataset for ap-

proximately the same duration, and yet created markedly different codes (Figure 6.4).

6.5.1.1 Redesign

Based on the observations made from the formative evaluation and from the par-

ticipant feedback, enhancements were made to some of the visualizations.

Scale-Robust Timeline View: The transcript timeline visualization became less

readable when longer videos of around 60 minutes were used. The visualization was

thus extended to indicate, through color codes and position, the different speakers

in the visualization. A “magic lens” local zoom was added to the view for easier

selection of a visualized element.

Text Filters: The word cloud view was made more useful by introducing more

techniques for “focus” tasks explained in section 6.2.2. This included the filtering

tasks explained in the section, such as word clouds specific to one speaker’s utterances,

word clouds specific to certain coded parts of the transcript, or a dynamic word cloud

that updates itself to a selected block of text.

Interactive Code Linking: The color limitation that was faced by using more

than 12 codes was mitigated to an extent through enhanced interactions. The code

colors on the transcript were made non-persistent, i.e. they “faded” two seconds

after coding, so that transcript legibility was not compromised. Users could bring

back the color on the transcript by hovering or clicking on a corresponding code in
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word cloud

video seeking

transcript timeline

transcript

assign codes

sketch timeline

speech overlaps

activity timeline
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Figure 6.8. Task-wise usage of the different elements of VizScribe,
aggregated over all participants. Views such as the word cloud, the
transcript timeline, and the sketch timeline can be deemed the most
versatile, since they are used across most of the tasks. The distri-
bution shows that most of the exploration of the provided dataset
occurs through the “sketch timeline”: the view showing the creation
and development of every sketch by the subjects in the video.

the coded timeline view. This ensured that the transcript was overlaid with only one

code (color) at any point of time, making it visually easier on the user.

Extensibility: Most of the extensibility discussed in section 6.3 was developed as

a result of this study, based on participants suggesting various datasets that could be

connected to the VizScribe timeline.

The summative study was conducted after implementing the above changes.

6.5.2 Results and Implications from the Summative Study

Our choice of tasks for this study aimed to help us understand the kinds of visu-

alizations that are applicable to certain tasks, and to determine the versatility of the

visualizations, i.e., whether they are used for a varied set of tasks. Of the “closed-

ended” tasks, all ten participants had correct answers to T1, while eight participants

got T2 right. The two who had a different answer were not necessarily wrong: they

chose the participant who had sketched the idea, and not the member who originated

the idea. The consistent answers to these tasks confirm the veracity of the data

representations.
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Using participant activity logs collected over the duration of the study, we can see

that the transcript timeline and the sketch timeline were clearly the more versatile

views: they were used more in tasks T1 through T4 (Figure 6.8). To a lesser extent,

so was the word cloud, used sparingly during these tasks. Tasks T5, T6, and T7 were

designed to require the use of the word cloud, the speech participation timeline, and

the activity timeline respectively. The most interesting interactions of the participants

involved filtering and navigating text views, analysts using different visualizations for

the same task, and observations of the video-recorded behavior by interacting with

activity sensors.

Filtered Navigation: We observed participants using the word cloud as a filter

for the transcript view, especially when performing a focused search for an idea. In

completing T2, for example, the participants, having previously identified that the

final product was a board game, used the word cloud and its link with the transcript

(text and timeline) to filter it for all occurrences of the word “board”. One participant

explains: “there were many cases where I saw an interesting pattern on the timeline,

watched the video, read the transcript, found a word, and then saw where else it

occurred in order to see if there was a pattern”. By navigating around these filtered

sections of the transcript, they were able to identify the right times. For task 5,

where the word cloud use is explicitly required, the participants were required to

identify themes from the word cloud of each video subject’s utterances. However,

in addition to this, three participants tagged the same subject as the leader of the

team captured in the video—an unexpected and interesting use of the word cloud.

This form of subject characterizations through a summary view, while convenient,

can be antithetical to the rigor of good coding practice. This is the space that the

VizScribe framework is designed to occupy: it allows the analyst to skim through a

larger dataset, identify questions of interest, and perhaps focus on these questions

while taking a closer look at the details.

Multiple Approaches to Explore Datasets: Perhaps the most important behavior

we observed was that different participants had different ways to orient themselves
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1
strongly
disagree

2 3 4 5
strongly
agree

I think that I would like to use this system frequently

I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a technical person to be able to use this system

I found the various functions in this system were well integrated

I thought there was too much inconsistency in this system

I would imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could get going with this system

Higher is better

Lower is better

Figure 6.9. The System Usability Study (SUS) scores shown category-
wise, aggregated over all participants. Plots in orange are better when
lower, while plots in blue are better when higher. An overall score of
75.5 was obtained.

around the dataset, and picked different “entry points” into the dataset. Most notable

were the use of the transcript timeline view, the transcript (text view), and the sketch

timeline view. This makes sense: conceptual design predominantly involves sketches

and explanations of these sketches, when working in a team. Providing representa-

tions of both these activities to the analysts allows them the flexibility of choosing

the data representation based on the research question being asked. It would thus

seem that it is not just the dataset that determines the most useful representation,

but also the user who determines it. While this may seem obvious, this insight is

often missing from most CAQDAS tools: there are few alternate representations of

the same dataset.

Temporal Correlation of Multiple Data Streams: Task T7 required participants

to pay attention to the activity timeline view, and note unique instances and cor-

responding subject activity in the video. This was done to raise the participants’

awareness of the usefulness of such representations. Sure enough, participants found

that they could not only make note of larger events such as subjects leaving the room,

but also smaller instances of them leaning across a table, or even picking up a toy
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from the table. One participant remarked “traditionally, it has been difficult to track

down the correlation between verbal behavior with gestures, sketching behaviors. With

the help of these features, researchers would have a much easier time to pinpoint the

relations between these behaviors.”

Overall, the framework was very positively received by the participants. In ad-

dition to their feedback, they were also required to respond to the System Usability

Scale or SUS [132]. VizScribe scored an overall 75.5 out of a possible 100 points.

The individual break-up of the scale, along with the participant score distribution is

shown in Figure 6.9. The participant with prior experience with CAQDAS tools sum-

marized it best: “The tool is a great synthesis of what other tools have been missing,

as I have used them.”

6.5.3 A Note on the Data Analysis Spiral

The process of qualitative data analysis is aptly described by Creswell [133, p.

182] as a “data analysis spiral”. This spiral represents organization and management

of data, reading, reflecting, annotating the data, identifying and comparing contexts

and categories, interpreting and describing, as well as representing and visualizing

the data. This is an iterative process, involving alternating deep dives into the data,

reading it and creating memos (reflective notes) to get a sense of the data as a whole,

examining it in parts to identify patterns of interest, as well as “winnowing” it to

select information of relevance. Drisko [134] emphasizes how qualitative data analysis

software has made possible research endeavors into multimedia data, by allowing the

display of images, audio, and video, and the relationships between data that can be

inferred or specified directly on images or indirectly on video and audio timelines.

Just as the use of multimedia added a richer layer to qualitative analysis, sensors

such as eye-tracking sensors, EEG sensors, and inertial measurement units provide

data that allow for richer research questions to be answered. VizScribe provides a

general framework for the display of such datasets, allowing the researcher to create
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meaningful visualizations of such data (as shown in Figure 6.6), and link it to tradi-

tional multimedia data. We saw in Section 6.4.3 how this enabled functions such as

filtered navigation, multiple approaches to explore datasets, and temporal correlation

of multiple data streams that allowed participants to access and make sense of such

sensor data. VizScribe thus provides computer support for qualitative analysis in the

light of emerging techniques of data acquisition.

It bears stating that qualitative data analysis requires that the analyst familiarize

themselves with every bit of the data. In this sense, VizScribe is to be seen as a

framework to allow a deeper study of this data and its connection to other related

data, and not as a means of “skimming the surface”. While it is possible to use

VizScribe in the latter manner, it would defeat the purpose of qualitative analysis.

6.6 Limitations and Future Work

VizScribe has been designed for navigation and coding of data that otherwise

cannot be easily visualized into a single, dashboard view. To an extent, this requires

pre-processed data, for example, all data needs to be time-stamped, transcripts benefit

from speaker identification, and so on. While the coded data can be exported from

VizScribe for additional analyses, VizScribe would be a more effective tool if it offered

end-to-end processing and analytics required for qualitative analysis. We envision the

following future enhancements to VizScribe:

Preprocessing: This involves both the implementation of algorithms such as the

Penn Phonetics Lab Forced Aligner [135] for synchronizing the transcript to the audio

track, as well as allowing interactive selection and customization of the information vi-

sualizations used. The current implementation allows customization when performed

programmatically. However, based on the data imported (keylogs, browsing data,

biometric data), the user should be allowed to interactively select visualizations.

Data-Aware Annotation and Coding: VizScribe currently has the framework for

allowing multiple timeline visualizations, but not timeline-level coding. This is par-
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ticularly important for coding sketches, movements across the design space, gestures,

and so on. Our future plans include a data representation of codes applied directly

on the timeline, and consolidated together with all representations. Additionally, the

absence of data—be it radio silence, video inactivity, or audio silence—is often as sig-

nificant as the presence of data. Thus, gaps in the visualizations, where no geometric

or text entity is displayed, need also be amenable to navigation and coding.

Analytics: The next step for VizScribe would be to incorporate visual analytics

to process the data for a higher-level exploration. This includes, but is not limited

to, features such as named entity recognition and tagging, parts-of-speech tagging,

semantic distance-based filtering of the transcript based on the defined codes. Socio-

metric data would also benefit from such analytics to better support embodied and

socio-material interactions. Additional use of analytics would be in processing the

coded data to provide meaningful results. This can include inter-coder reliability cal-

culations and axial coding, which includes the ability to generate matrices to compare

instances tagged with intersecting codes.

Dissemination: With visualization toolkits such as D3, the web browser has al-

ready become a medium for both generation and dissemination of visual representa-

tions. Future work in VizScribe will also look at means to export the final data and

analyses into reports or presentations.

6.7 Conclusions

We have outlined the requirements of design protocol analysis tools, emphasiz-

ing the need for building custom timeline views so that the analyst can set up their

own visual representations of design activity. We then presented VizScribe, a vi-

sual analytics-based framework for representing and exploring design protocols. Our

framework bridges a gap that is currently not addressed by existing qualitative data

analysis tools, namely, the processing and presentation of new and emerging forms

of data such as sensor data and user log data. VizScribe imports video, transcript,
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and other log data, and uses linked and interactive representations for the user to

navigate and explore, code, and export the data. We refined and enhanced visualiza-

tions and interaction modes of the framework by conducting formative studies. We

then performed a summative evaluation of VizScribe, through which we showed the

advantages of (a) filtered navigation, in helping identify context-specific patterns in

the multimodal data visualizations, (b) multiple ways for analysts to approach the

same dataset, and (c) supporting the identification of verbal and non-verbal relations

within datasets. Finally, we found that the transcript, timeline, and sketch views

were versatile visualizations, with custom views bringing newer ways of navigating

the dataset and obtaining newer insights.
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7. CLOSING NOTES

7.1 Conclusions

Computer support for the informal and ostensibly unstructured nature of early

design is fraught with complexity. This is partly due to the nature of early, con-

ceptual design where designers use sketches and verbalizations in the form of notes,

annotations, and discussions to externalize their ideas. Traditional computer support

tools for detailed design, for instance CAD applications, require the designer to follow

prescribed, highly codified steps to externalize their ideas. This imposition of a pre-

scriptive process does not hamper the designer significantly when the details of the

problem and of the design are clear. However, extending such tools and operations

to early design with a view to replacing the simple pencil-and-paper medium would

prove intrusive to the designer. At the same time, this informal workflow—where de-

signers tend to use their tacit knowledge and insights to form connections and explore

ideas—are problematic to the design researcher, who has to make sense of the design

process and of the designers’ thinking by using video recordings and by examining

the artifacts created and overwritten over time.

The goal of this thesis was to present tools and methods to help both designers

and design researchers make sense of the unstructured verbal and text data generated

in early design. To recapitulate, this thesis has three main contributions:

7.1.1 Text Visualization to Understand Collaborative Ideation

In order to obtain an overview and detailed view of the unstructured verbal data

generated in collaborative ideation, we studied two groups of 9 design teams each

where each group followed a different process of ideation. Using concept maps to

identify dominant and connected keywords from the text, we obtained an overview
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that showed us how the group of teams that followed an unstructured brainstorm-

ing processes stayed at a lower level of detail while achieving a wider breadth of

design space exploration. The same overview for the group of teams that followed

an alternating divergent-convergent process of ideation showed a higher level of de-

tail, but explored a narrower breadth of ideas. The lexical dispersion plots revealed

(when applied to transcripts of team discussions) when these keywords occurred dur-

ing the brainstorming process, and revealed (when applied to team reports) where

these keywords occurred. The text concordance plots aided disambiguation by re-

vealing context. We posited that a combination of these visualizations would provide

a powerful means for the design researcher to sift through such unstructured verbal

data.

7.1.2 Cognitive Models to Understand Collaborative Sketching

We turned to the other form of idea externalization ubiquitous among designers:

sketches. We identified requirements for a digital tool to aid collaborative sketching,

and used skWiki, a web-based collaborative sketching framework, to perform trans-

verse and longitudinal studies of collaborative conceptual design. We identified three

main uses of skWiki’s “paths” model:

• Group awareness: The representation of each team member’s activity as a

“path” of sketches provided the other members with a representation of each

other’s activity, allowing them to use skWiki effectively in both collocated and

distributed settings. This representation was also useful to the design researcher

in observing the team’s activities without having to intrusively observe them.

• Cognitive aspects of branching: skWiki allowed designers to duplicate each

other’s ideas and modify them without the fear of overwriting the original ideas.

This allowed them to create design alternatives that were related to, but distinct

from the original ideas (lateral transformations [17]). The team was also able to
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add detail to each other’s ideas (vertical transformations [17]). The persistence

and replicability of sketches eased both of these cognitive processes.

• Cognitive aspects of merging: While skWiki allowed for merging sketches,

the operations required to perform such merges were prescriptive and therefore

intrusive, resulting in no instances of merge being used in the earlier study. We

thus focused on the specific problem of merging by using an application that

allowed a designer to merge two given sketches, thus simulating merging in a

collaborative design scenario. In addition to the traditional freeform selection of

sketch elements, we explored an alternate selection technique that used stroke

aggregation based on temporal occurrences of strokes. We identified four cog-

nitive operations involved in merging, namely reuse, refactor, repurpose, and

reinterpret, that designers used to explore the design space through merging

and recomposing sketches. We found the difference between the emergent and

source sketches to be positively correlated to the number of reinterpret opera-

tions, and negatively correlated to the number of reuse operations.

7.1.3 Understanding Design Team Behavior using Visual Analytics

We adapted the text visualization techniques used earlier, along with the “path”

representation as used in skWiki, together with traditional protocol analysis data such

as video and transcript, and presented a Visual Analytics-based framework called

VizScribe. VizScribe allows the design researcher to create linked views of videos,

transcripts, sketches, and other data that have a temporal aspect. Through the

use of an orient-focus-code interaction paradigm, VizScribe allows the researcher to

explore the data, identify points of interest, and interactively filter and query the

dataset, using the linked views to provide context. It also allows the researcher to

code segments of the transcript using an open, inductive coding technique. Studies

conducted with design researchers and protocol analysts indicated that the linked

views provided a variety of ways in which the users could access the data, with the
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text views providing a combination of overview and detail, further augmented by the

sketch “path” views and other sensor data visualizations. We also illustrated the

flexibility of VizScribe in adapting to multimodal datasets. VizScribe’s web-based

framework was also used to prototype a “collaborative coding” scenario.

In summary, this thesis illustrates how the use of appropriately selected data

representation techniques can help both the designer and design researcher in their

tasks. In addition, we illustrated how computer support for collaborative sketching

can go beyond merely emulating paper, by identifying existing cognitive operations

for design space exploration that are made more convenient through such computer

support tools, and by proposing newer cognitive operations for the same that are

highly difficult, if not impossible without such computer support tools.

7.2 Future Work

The overarching goal of this work is to provide tools and methods to better under-

stand collaborative conceptual design. Verbal and sketch data, as mentioned earlier,

are steeped in ambiguity. The representations proposed and used in this work dispel

some of this ambiguity by representing explicit connections between data, i.e. connec-

tions such as temporally co-occurring events in VizScribe, the locations and counts

of keywords of interest in the text visualizations used, and paths connecting sketches

based on editing histories. The next step to aid sense-making of such data would

be to explore more implicit connections. These include, but are not restricted to,

semantic connections between words, representing hierarchical relationships between

concepts, and establishing relationships between sketches and verbal data. These and

other directions for future research are outlined below:

• Semantic relationships between words: Verbal communication is inher-

ently imprecise due to synonymy (the use of different words to refer to the

same thing) and polysemy (the same word having different meanings). While

text concordances provide a means to manually identify instances of polysemy,
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synonymy is an issue currently not addressed by the text representations used

in VizScribe. Similarly, the use of anaphors—using an expression whose inter-

pretation depends on the context in which another expression is used—means

that certain information is lost when using the text visualization techniques

proposed in this thesis. An example would be the use of pronouns to refer to

a previously defined noun, or designers pointing to a component in a sketch

and refer to it as “that” or “this thing”. The latter reference is lost unless all

temporal sketch data are captured along with transcribed text. While some

issues like anaphora resolution and text disambiguation remain open problems,

lexical databases such as WordNet [136] provide hierarchical semantic relation-

ships between nouns (hypernymy, or is-kind-of relationship) and between verbs

(troponymy, or is-a-way-to relationship), in addition to synonym sets at each

hierarchical level. Using existing NLP algorithms, a network between all verbal

data used can be computed based on semantic distance measures [137]. Such

measures can also be used to provide a hierarchy of concepts based on hyper-

nymy to view the concepts verbalized at different levels of abstraction.

• Domain-aware representations of verbal data: Most lexical databases

use general text corpora for calculating information content measures, and the

relationships mentioned earlier. When it comes to design, domain-specificity

is lost when using such general text corpora. Semantic relationships based

on, say, troponymy can be made more design-specific by using function tax-

onomies [138]. Similarly, text-entailment recognition techniques [139] can be

used to make causal relationships such as “if we choose this material, we will

exceed the weight limit” which in turn can be used to infer design constraints.

Using parts-of-speech (POS) tagging to distinguish functional attributes from

structural attributes, named-entity recognition (NER) that will help identify

domain-specific terms, and coding and identifying and mapping design deci-

sions to form Linkographs [140] are other directions for future work.
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• Implicit relations between sketches: In collaborative design sessions, de-

signers can form mental connections between their sketches and those around

them, which inspire them to sketch new ideas. These connections that are tac-

itly formed by designers are a challenge to record, both in traditional protocol

analyses, and through systems such as skWiki. Identifying non-intrusive ways

to capture and record these connections, perhaps through eye tracking sensors

or gesture recognition techniques, would be a significant challenge.

• Shared sketching spaces: Early design often takes place on large whiteboards

where designers often sketch together, exchanging ideas fluidly by sketching in

a shared space. While devising the necessary hardware and software for such

activities is out of the scope of this work, an interesting exercise would be to

conceptualize how (and if) the skWiki paths model scales to such an interaction

paradigm. skWiki currently emulates the notion of a shared design notebook:

each designer operates in their own digital space, insulated from the others. The

paths model for a “whiteboard” version of skWiki, and a visual representation

of such a model pose interesting challenges, with promising implications.

• Collaborative coding paradigms: While a collaborative coding prototype

was created to illustrate the strength of the web-based framework, creating a

real-time, meaningful representation of collaboration is an altogether different

problem. For instance, is it enough to show the coding activity between two

researchers? Showing all activities of exploration, querying, and filtering would

create an information overload and subsequent distraction for both participants.

On the other hand, there are scenarios where a novice can study how an ex-

pert researcher/coder orients themselves to the data to explore and code them.

At a methodological level, when is it useful to collaboratively code the data?

Inter-coder reliability requires a degree of independence between the coders.

On the other hand, some discussion about coding techniques are necessary for

the sake of methodological consistency. Meaningful representations of coding
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activity between researchers or coders with similar domain expertise may need

to be different from the representations used between researchers with different

domain expertise. Developing VizScribe in this direction will need comparative

analyses with different representations of collaboration.

Jon Kolko [7] describes how the conceptual design process may appear to an

observer: “The artifacts developed by the designer are messy, usually drawn in the

midst of deep and reflective thinking; they are sketches drawn in Sharpie, incomplete

sentences, and crude diagrams lacking adequate captions or descriptions. . . it is not

immediately clear how one derived (the design idea) from (the research data)”. While

the design researcher will certainly continue to find the design process complex, it is

safe to say that with appropriate computational support, there will gradually be fewer

complications in analyzing such processes.
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