
VizScribe: A Visual Analytics Approach
to Understand Designer Behavior

Senthil Chandrasegaran1, Sriram Karthik Badam2, Lorraine Kisselburgh3,4,
Kylie Peppler7, Niklas Elmqvist1,2, and Karthik Ramani5,6

1College of Information Studies
2Department of Computer Science

University of Maryland, College Park, MD, USA
3The Center for Education and Research in Information Assurance and Security

4The Burton Morgan Center for Entrepreneurship
5School of Mechanical Engineering

6School of Electrical and Computer Engineering (by courtesy)
Purdue University, West Lafayette, IN, USA

7School of Education
Indiana University, Bloomington, IN, USA

Abstract

Design protocol analysis is a technique to understand designers’ cognitive processes
by analyzing sequences of observations on their behavior. These observations
typically use audio, video, and transcript data in order to gain insights into the
designer’s behavior and the design process. The recent availability of sophisticated
sensing technology has made such data highly multimodal, requiring more flexible
protocol analysis tools. To address this need, we present VizScribe, a visual
analytics framework that employs multiple coordinated multiple views that enable
the viewing of such data from different perspectives. VizScribe allows designers to
create, customize, and extend interactive visualizations for design protocol data
such as video, transcripts, sketches, sensor data, and user logs. User studies where
design researchers used VizScribe for protocol analysis indicated that the linked
views and interactive navigation offered by VizScribe afforded the researchers
multiple, useful ways to approach and interpret such multimodal data.

Keywords: Protocol analysis, design research, design behavior, human-computer
interaction, information visualization, visual analytics

Preprint submitted to Int. J. Human-Computer Studies November 11, 2016

1. Introduction

Design as an activity can be interpreted in different ways: as a social practice
that requires interaction between designers (Oak, 2011), as a cognitive process
in the form of a dialogue between the designer and their sketch (Goldschmidt,
1991), or as an elicitation of tacit knowledge by the designer (Henderson, 1998).
In all, action, interaction, and communication are essential components of the
designer’s process. To understand the designer’s thinking and the design process, it
is necessary to study how designers interact with each other and their environment.

Such studies, often falling under the broader category of protocol studies
involve recording the design session on video and audio, followed by transcribing,
segmenting, and coding such data. Dinar et al. (2015) discuss such analyses in
their detailed review of empirical studies of design, including traditional protocol
analyses that involve coding designer utterances and actions. Typically verbal data
forms the basis of such analyses, such as think-aloud protocol analysis where a
designer verbalizes her activities, giving insight into her thought process (Ericsson,
2006), or latent semantic analyses of a design team discussion to assess coherence
between team members (Dong, 2005).

Analysis of verbal data requires manual transcriptions of participant verbaliza-
tions by transcribers—often lacking domain knowledge—provided with a relevant
glossary of terms. These transcriptions and segmentations then need to be verified
by employing multiple coders. The design researcher may not be the one coding
the data, although they may need to explore the data to identify questions that need
answering. In addition to audio and video data, protocol studies often also involve
analysis of sketches, notes, and other “marks-on-paper” (Ullman et al., 1990, p.269)
that are integral to designer behavior. To designers, sketches function as external
memory, or as a medium to think. To analysts, sketches are externalizations of the
designer’s thoughts, providing insights into their mind. Sketches are also logs of
their thought sequences.

Qualitative analyses of protocol studies—both in-situ and in-vivo—may require
making sense of multimodal data. This data can include, but is not restricted to,
audio/video recordings, artifacts created by subjects, or electronic records of user
activity, typically through the use of Computer-Aided Qualitative Data Analysis
Software (CAQDAS). However, while there are many options in CAQDAS software
for analyzing and coding video, transcripts, and document data, there are few that
provide support for broader forms of data, including movement, activity and posi-
tion data from smartphones or sociometric sensors, or even psychophysiological
measurement devices such as electroencephalography. Dinar et al. (2015), in their

2

review of 25 years of research in design theory and methodology, suggest the use
of automated data collection and analyses to process the increasing volume and
heterogeneity of data collected in such studies.

To address these challenges, we look to the field of visual analytics for in-
spiration. Visual analytics is “the science of analytical reasoning facilitated by
interactive visual interfaces” (Thomas & Cook, 2005, p. 4). Specifically, it fo-
cuses on interactive visual representations that exploit the human ability to spot
patterns and anomalies, while allowing the computer to process large datasets.
Information visualization (Infovis), defined as a “graphical representation of data
or concepts” (Ware, 2012, p.2), naturally forms an essential part of visual analytics.
Keeping these needs and possibilities in mind, we present VizScribe, a web-based
framework that supports the representation of multimodal data, including tradi-
tional as well as newer forms discussed earlier. The framework allows analysts
to generate appropriate visual representations of temporal datasets, and link them
to the existing video and transcript displays. These visualizations include line or
area charts, timeline plots, color maps, or any other visualization that the user can
construct using the underlying JavaScript library. VizScribe supports interactive,
coordinated visualizations that can be customized. The coordination between visu-
alizations is performed through brushing and linking (Li & North, 2003), an infovis
technique that, when the user selects a part of the data shown on visualization,
updates the other coordinated views to reflect the selection. The technique allows
analysts to easily and intuitively explore the data and interactively code it. In the
context of protocol analysis, this supports contextual exploration of data, allowing
the analyst to attend not only to singular data sources, but also intersectional and
contextual factors. This in turn helps analysts develop a “thick description” (Geertz,
1973) of the designer’s behavior: a description that explains both the mechanics
and the context of the behavior.

The contributions of this work are twofold: (1) a web framework for protocol
analysis inspired by visual analytics techniques, and (2) results from formative
and summative studies of protocol analysts using the framework to analyze a team
brainstorming session. The framework itself enables the analyst to:

• Explore and analyze time-stamped verbal protocol data by creating coordi-
nated, interactive timeline visualizations, word-cloud views, and transcript
views that are linked to the corresponding video data,

• Visualize other protocol data such as server logs and biometric/sociometric
sensor data in the form of interactive timeline visualizations, linked to the
visualizations of the verbal protocol data above,

3

• Select and code the verbal protocol data, and finally

• Customize or add new timeline visualizations that are pertinent to their study.

To test the usefulness and to refine the usability of the VizScribe framework,
we performed two studies: (1) a formative study involving both prescribed and
open coding tasks, and on further refining the framework, (2) a summative study in
which participants analyzed a 60-minute design session through video, transcript,
sketch, speech, and activity data. Our studies demonstrated that timeline and
text views of the transcript, and the timeline view of sketching activity were the
most widely-used visualizations for most tasks, while word cloud visualizations
were used as a filter to identify salient parts of the transcript. We observed that
participants both with and without training in CAQDAS tools were comfortable
using VizScribe to sift through the data. VizScribe allowed analysts to orient
themselves with a medium that they found most comfortable—sketches, transcript,
or the video of the design session shown—with little difference in the task outcome
or the user feedback.

In the following sections, we review related work in protocol studies, motivate
the need for visualization techniques to represent both temporal and text data,
and detail the design and implementation of the VizScribe framework. We then
describe the user studies, and participant feedback, finally highlighting challenges
and future work.

2. Background

In this section we discuss existing tools for protocol studies. We then motivate
the need for two kinds of visualization techniques for such studies: event-based
representations for temporal analysis, and text visualizations for inferring patterns
in the structure and semantics of the transcribed text.

2.1. Existing tools for protocol studies
Early work on computational support for protocol studies included artificial

intelligence-based systems such as PAS-II (Waterman & Newell, 1973), which
incorporated linguistic processing on task verbalizations to generate graph represen-
tations of human knowledge, and KRITON (Diederich et al., 1987), a knowledge-
extraction system that infers knowledge elements and then forms relations using
propositional calculus. Other approaches to support such studies used generic
software such as AQUAD (Huber & Garca, 1991) and SHAPA (Sanderson et al.,
1989) for collecting and organizing data, metadata, and annotations.

4

Commercial tools for qualitative analysis include multimedia processing tools
such as ATLAS.ti1 and NVivo2. These allow visualization and annotation of video
and transcribed text, preserving associations between the two. The Computational
Analysis Toolkit (Lu & Shulman, 2008) extends ATLAS.ti to a web-based frame-
work while increasing coding flexibility and speed. StudioCode3 is another popular
tool for video and transcript analysis. Other tools, such as LINKOgrapher (Pourmo-
hamadi & Gero, 2011) are developed for more downstream applications: analysis
of codes using a predefined ontology in the context of conceptual design. However,
these tools cannot provide coordinated views of multimodal data, nor can they
adapt to diverse and evolving forms of data that protocol studies are beginning
to entail. VizScribe is designed for integrating of multimodal data, allowing a
synchronized view of all recorded events accompanying the main audio/video and
transcript, thus providing context to the user.

Each of these tools has their specific advantages and disadvantages; for instance,
there are issues such as forced workflows (imposing a specific style and sequence
in coding), coding fetishism (using coding irrespective of whether or not it is
appropriate), distancing the user from data, or, at the other end of the spectrum,
difficulty in conceptual abstraction (Duff & Séror, 2005). Complete automation of
the coding process is another challenge. For example, automated coding tools need
better approximations of linguistic features inherent to coding schemes (Rosé et al.,
2008). While it is unclear whether a visual analytics-based approach will mitigate
some of these issues, a combination of visual representation and computational
analysis should serve to augment the pattern-recognizing strengths of the human
user and the data processing power of the computer.

2.2. Visualizing Event-Based Data
Analysis of data collected from protocol studies involves a temporal component,

with a view to identifying and annotating co-occurring events. We restrict this
section to related work in timeline visualizations of categorical data, which is more
relevant to protocol studies than numerical data.

Lifelines (Plaisant et al., 1996) is a general representation of biographical
data, visualizing discrete events and relationships, and allowing focus on specific
parts on the timeline information. Wang et al. (2008) use timeline-based interac-
tive visualizations to align events in patient medical records in order to identify

1http://www.altasti.com/
2http://http://www.qsrinternational.com/
3http://www.studiocodegroup.com/

5

co-occurrences of other related events. Challenges in interacting with such repre-
sentations are illustrated by Monroe et al. (2013), who developed a visual query
mechanism for these events.

CyberForensic Timelab (Olsson & Boldt, 2009) uses timeline displays for
establishing history in cyberspace. It displays a timeline view of electronic records
of personal, time-stamped events, to provide the investigator with a visual history
of events. PortVis (McPherson et al., 2004) uses an overview and detail-on-demand
approach to display activity on a large set of TCP ports in a network over time,
identifying traffic anomalies that signify possible attacks on the network.

Stab et al. (2010) use timeline views for more general applications: they develop
SemaTime, a temporal visualization tool that allows hierarchical categorization and
filter of domain-specific data. It also incorporates semantic relationships between
entities, similar to Continuum (André et al., 2007), which also provides histogram
overview and timeline detail view of temporal events. Temporal relationships
are represented as spans of bounding boxes, providing a visually pre-attentive
visualization, with the level of detail controlled using a “dimension filter”. Rubin
et al. (2013) present a set of tools for Navigation and editing between speech and
transcript for high-level editing of interviews to create “audio stories”. These tools,
though not meant for protocol studies, use methods that are both relevant and useful
for future iterations of VizScribe.

More relevant to our work are the Digital Replay System (Brundell et al.,
2008), an ethnographic tool that uses an ontology-based data representation for
multimodal data analysis, and Chronoviz (Fouse et al., 2011), a timeline-based
annotation and visualization of multimedia data that uses timestamps to display
video, audio, and electronically-recorded annotations with related timeline data
such as geospatial data and sensor logs. Like Chronoviz, VizScribe provides a
coordinated view of multiple timeline visualizations, and a way for the user to
modify and create custom timeline visualizations. However, VizScribe differs from
Chronoviz in three main ways:

• It emphasizes verbal data by providing three different, mutually coordinated
views of the transcript: a timeline view, a text view, and a word cloud view for
temporal and overview exploration, and finally a fourth “text concordance”
view of all the contexts in which a selected word is used in the data.

• It supports the creation and use of more complex timeline-based visual-
izations such as sketching behavior which is partly temporal (e.g. sketch
creation times) and partly semantic (e.g. showing the progression of a sketch
and its collaborative development over time).

6

• Finally, the framework runs on the web browser and uses the D3 visualization
plugin, making it both cross-platform and customizable.

While Dedoose is also a web-based and cross-platform tool, the remaining
advantages of our framework are maintained when compared to it, as well as
to other CAQDAS tools. However, it is worthwhile to note that VizScribe is an
implementation of a visual analytics approach to protocol analysis, and not an
end-to-end CAQDAS product. As such, the focus of this work lies in the rationale
behind this approach, its design, implementation, and evaluation.

2.3. Visualizing Text
Protocol analysis almost always includes transcribed text as a main data format.

These are thus uniquely suited for a combination of text visualization linked to
associated timeline visualizations discussed earlier. Previous tools for in-situ
studies have used computational linguistics to draw inferences. However, there is
no panacea for cross-domain linguistic analysis. Polysemy and sentence parsing
issues make a completely automated text analysis tool a considerable challenge.

Developments in visualization techniques have opened up another dimension
in text analysis: visualizing text data. Basic text visualizations include frequency-
based word clouds such as Wordle4, keyword in context representations (Manning
& Schütze, 1999), and lexical dispersion plots (Hoey et al., 2001). More sophisti-
cated visualizations involve a degree of aggregate representation, or representation
of metadata. The Word Tree (Wattenberg & Viégas, 2008) is an example of the for-
mer, with its aggregation of concordant terms to form a ‘tree’ of words or phrases,
scaled by occurrence. Parallel Tag Clouds (Collins et al., 2009b) is an example
of the latter, with tag clouds in the form of parallel axes to represent relationships
between multiple documents.

Representations for document content overview include Arc Diagrams (Wat-
tenberg, 2002), which represent document structure visually, or in semantic form
as visualized in DocuBurst (Collins et al., 2009a). Such semantic bird’s-eye visual-
izations work well when combined with the more detailed keyword visualizations
for an effective combination of overview and detail. VizScribe uses the word cloud
and keyword in context representations, and a version of lexical dispersion plots as
the transcript timeline view with interactive linking between these.

4http://www.wordle.net/

7

3. Design Rationale: Visualizing Multimodal Protocol Data

Newell (1966, p.1) defines a protocol as “a record of the time sequence of
events” that also includes “continuous verbal behavior of the subject” in the context
of problem solving in a think-aloud setting. These transcripts of verbal behaviors
are studied, annotated, and coded by design researchers, in order to form and test
hypotheses, and to answer research questions (Pourmohamadi & Gero, 2011). Such
annotations and codes are created by first identifying design behaviors situated in a
specific time and context, determining categories of such behavior, and assigning
them to appropriate codes. The analyst’s challenge is to make sense of a multitude
of such time series data or observations, by linking them to transcripts of designer
discourses, video captures of designer actions, and artifacts such as sketches or
prototypes created by the designer.

Our layout design and the interactions afforded by our framework are informed
by these aspects of protocol studies. With the increasing prevalence in the use of
software tools for design and the use of sensors such as accelerometers, gyroscopes,
and bluetooth devices to track collaboration dynamics in teams (Kim et al., 2012),
protocol data have become richer and more varied. Making sense of such multiple
forms of data depends on two major factors: the way in which these datasets are
displayed to the user (analyst) and the way in which the user is able to interact
with these datasets. Both of these requirements are commonly encountered when
designing infovis and visual analytics tools and will thus benefit from principles
derived from these fields.

VizScribe is designed essentially as a cohesive collection of coordinated mul-
tiple views (Heer & Shneiderman, 2012, p.12)—linked views of related datasets
that enable the viewing of the data from multiple perspectives. The rationale and
requirements behind this framework are detailed in this section.

R1 Spatial Coherence: Visually representing time sequences of events, including
verbal behavior, needs a spatially coherent alignment to make sense of these
sequences. Position is a widely accepted encoding of quantities occurring on
a scale (Carpendale, 2003), the scale in this case being time. All timeline data
pertinent to a video-recorded protocol study session must thus be presented
coherently with the video timeline.

R2 Multiscale Representation: The substantial data obtained from protocol
studies can benefit from multiple scales of representation: of time, content,
and detail. These allow the user to identify patterns and form meaningful
connections between data. This “overview + detail” approach (Shneiderman,

8

1996) is a fundamental requirement of interactive visualizations, and is
integral to the interpretive coding process as well (Creswell, 2012).

R3 Context Awareness: Connections between different representations of data
need to be made evident to the user as needed. For data from protocol studies,
this is especially important in order to provide context. This is also useful
when the analyst is trying to understand if there are patterns of behavior
evident in the coded sets of data.

R4 Interactivity: Making sense of multiple datasets requires fluid interactions
with their representations. These interactions should allow the user to orient
themselves to data visualizations, focus on specific elements of the visual-
izations, and then code the data. Elmqvist et al. (2011, p.336) emphasize
the importance of “providing immediate visual feedback on interaction” for
both major and minor interaction events. They also recommend allowing the
user to interact directly with the visual elements.

R5 Extensibility: Given the ever-changing nature of data collected in protocol
studies, such visualizations need to be extendable to accept newer forms of
data, mapped to appropriate visual representations.

4. The VizScribe Framework

VizScribe’s design addresses the previously-established requirements of spa-
tial coherence, multiscale representations, context awareness, interactivity, and
extensibility. The two main aspects of this design are the layout—determining how
the data is represented to the user— and interactions—determining how the user
explores the data. We detail both these aspects here.

4.1. Layout
VizScribe’s layout is divided into two main sections, shown in Figure 1:

• A temporal view, where all time-series data is shown in congruence with the
video of the design session being studied, and

• A transcript view where the transcript and other transcript-related data in-
cluding word frequencies and codes are shown.

9

linked

video view

sketching

activity

transcript

timeline

speech

participation

interactive

transcript

view

interactive

word cloud

from

transcript

code

definitions

ti
m

e
lin

e
 v

is
u

a
liz

a
ti
o
n
s

activity

timeline

Figure 1: A screenshot of VizScribe shows representations of video, transcript, sketching activity,
speech participation, and physical activity based on corresponding data. These data are displayed
as interactive timeline views, such as video progress, transcript visualization, and sketch timeline.
Word cloud and transcript views also allow the user to interact directly with the data. The user can
jump to a specific part of the video by clicking the transcript, and can select a line to assign it a
specific code. A short demonstration of VizScribe can be seen here: https://vimeo.com/
169905057

4.1.1. Temporal View
Video data forms the central reference of this view, providing context to any of

the other forms of temporal data. Visual representations of time-sequenced data
should be designed to answer the question of “what was happening when. . . ?”, by
providing a means to align all temporal data such that it provides context to the
analyst. The temporal view pane thus includes a video playback interface, with
time encoded as a progress bar spanning the width of the pane. All timeline data
visualizations are stacked under the video interface. They are scaled to, and aligned
with the video progress bar, providing spatial coherence (requirement R1).

The temporal view features an event-level interpretation of protocols, including
a timeline representation of the transcript. Our visual encoding of these events is

10

Timeline views for
speaker F4

video progress indicators

Verbalizations by F4
(transcript timeline)

Sketches created by F4
(sketching activity timeline)

Sociometric sensor-measured
speech participation by F4

(speech participation timeline)

Sociometric sensor-measured
physical activity of F4

(activity timeline)

Figure 2: Detail of VizScribe’s temporal view. The video used in this example has four participants
or speakers, and thus each participant’s activities are color-coded and displayed on the timeline. In
this figure, all activities of participant F4 are illustrated as an example. The timeline of verbalizations
shows a series of markers (y) indicating instances of F4’s speech. Similarly colored markers are
used for the remaining timeline views for F4.

inspired partly from temporal sequencing visualizations by Isenberg et al. (2008).
The transcript is encoded as a series of thin vertical marks as shown in Figure 1,
annotated as the “transcript” timeline visualizations. Each horizontal strip of marks
represent utterances of one speaker, identified in the transcript file. Multiple speak-
ers or subjects are color-coded accordingly across visualizations based on Harrower
& Brewer’s (2003) qualitative scheme. While the example shown in this paper does
not use a colorblindness-safe set of colors, Harrower & Brewer’s scheme includes
sets of colors that work for those with users who have difficulty distinguishing
colors. The dynamic linking between different visualizations (discussed under the
“Orient” interaction in Section 4.2) provides another layer of visual connection that
works in addition to the linking by color. The color coding is consistent across time-
lines, as seen in the figure. In the data used for this figure, sketching is performed
on digital tablets and shared among users, allowing sketching activity to be logged.
The visualization of this sketching activity also indicates through connecting lines
the modification or extension of previous sketches, inspired from Robinson (2008)
and Zhao et al. (2014).

This timeline visualization is also designed to be extensible (R5), wherein the
design researcher, with some programming background, can modify existing time-
line visualization panels, or add new panels of their own to suit their requirements.

11

For example, the speech participation data and accelerometer data collected from
personal sociometric devices (Olguı́n et al., 2009) on each subject is visualized
in the interface shown in Figure 1. This extensibility is explained in detail in
Section 5. Finally, any coding performed on the transcript is also reflected in the
timeline view, color-coded according to the user-defined codes. All of the above
timeline visualizations are overlaid with a video progress indicator (Figure 1),
visually linking them to the current time in the video.

4.1.2. Transcript View
The transcript view shows an interactive view of the transcript with correspond-

ing text visualizations and annotations. Color-coded speaker identifiers provide
a visual link to the corresponding timeline visualizations. In addition, within the
transcript view, a word cloud view is generated from the complete text of the tran-
script after stop word removal. The words are scaled in proportion to the frequency
of their occurrence in the text, helping identify recurring terms in the transcript.
The transcript timeline view, text view, and word cloud together present multiple
scales of representation (R2) to view participant utterances. Finally, a “code view”
section within the transcript view allows the researcher to define and edit codes.
A hierarchical code definition is enabled through tabbed entries in the field, thus
supporting open coding. The code view is color-coded as well, and any transcript
assigned to a particular code can be identified through these colors, thus providing
context awareness (R3).

Each visualization embedded in these views is linked to related visualizations,
shown implicitly through color and position, and identified explicitly through user
interactions. These interactions are described in detail in the following section.

4.2. User Interactions
Fluidity of interaction and directness with which the user (in the context of

VizScribe, the user is the analyst or researcher) can manipulate the data repre-
sentations separate an effective visual analytics system from an ineffective one.
Guidelines for designing such interactions have been determined with respect to
mapping user intent (Yi et al., 2007) as well as fluidity of interactions (Elmqvist
et al., 2011). The interactions designed into VizScribe address requirement R4, i.e.
enabling fluid user interactions with the displayed representations. The three kinds
of interactions designed into VizScribe are as follows:

• Orient: This is the act of the user familiarizing themselves with the data
representations without explicitly changing its state. We map such actions

12

to hover events: the dwelling of the mouse pointer on any element of the
visualization, interpreted as the act of “raising the attention of the computer
as a dialogue partner” (Müller-Tomfelde, 2007, p.561).

• Focus: This is the act of the user focusing their attention on one element on
the data representations. We map such actions to “selection” events (mouse
click and associated interactions) that change the state of the visualization.

• Code: This is the act of the user defining a code—a category of behavior or
utterance—and/or assigning that code to a part of the transcript.

Orient Focus Code

Hover over visualized

items to identify

connections

Investigate connections

by filters or detail views

Categorize items of

interest that follow a

pattern

Figure 3: The flow of analysis designed into VizScribe. The user initially orients themselves to the
various visualizations, using hover operations to explore connections. They then focus on items of
interest, and finally begin coding these items into categories. The resulting coded visualizations are
further explored to obtain better insight into the data.

The user’s process of analyzing the visualized datasets involves moving from
one of the above acts to the other, as depicted in Figure 3.

4.2.1. Orient
Figure 4 shows some of the ways in which users can orient themselves to the

data. Hovering on a line of the transcript highlights the corresponding mark in
the timeline representation of the transcript, and vice versa. Similarly, hovering
on a mark in the coded timeline view also highlights the corresponding line on
the transcript. Hovering on a word in the word cloud highlights all the lines on
which the word occurs, and shows a filtered view of these words in the timeline
view (Figure 4B). Hovering on the sketch timeline view described in Section 4.1.1
display thumbnails of the corresponding sketches (Figure 4C).

These interactions provide a means to ensure that the user is not overwhelmed
with the multiple data representations. They also allow the user a means of
previewing points of interest in the dataset, before performing an overt interaction
to focus on that point for a closer examination.

13

hover on speech timeline to view
corresponding text/dialog, and…

…to highlight it in
transcript view

hover on word cloud item to highlight its
occurrences in the timeline view and in the transcript view

red line shows
video progress

gray lines connect
different sketch versions

hover/click on a timeline
item to view sketch

a

b

c d

sketching activity timeline
represents sketches created

by speakers

hover on elements in
coded timeline view to

highlight corresponding
text in transcript view

Figure 4: Various forms of brushing and linking used in the framework, to facilitate the envisioned
orient and focus tasks. a shows the transcript text on the right, linked to a time-sequence
representation of utterance “events” color-coded by speaker ID. Hovering on an element in the
time-sequence view highlights the corresponding text in the transcript view, and vice versa. b
shows similar interactive linking, but this time, hovering on a word in the word cloud shows all
its occurrences in the time-sequence and text views. c shows the sketch log view, where each
“event” represents a sketch save operation. A hover event on this view shows a thumbnail of the
saved sketch. The interactions in d are similar to a except the time-sequence view shows all
utterance events assigned to a particular user-defined code.

4.2.2. Focus
In protocol studies, context is one of the main relations that needs to be ex-

amined. Yi et al. (2007) describe the act of “selection” in infovis as marking a
data item of interest to keep track of it. Selecting an item in the temporal view
has the effect of connecting this element to the video timeline, by skipping the
video to the timestamp corresponding to the visualized element, to provide context.
The timeline indicator on all other temporal views also skip to this timestamp,
providing a visual cue of other temporal co-occurrences. Correspondingly, the
transcript view scrolls to a participant utterance closest to this time, highlighting
what was said close to the instant of interest.

In the transcript view, selecting any word from the word cloud persistently

14

Filter by speaker: [ctrl-select] speech timeline to show word cloud for that particular speaker

Filter by text: [drag-select] transcript text to show word cloud for the selected text

Filter by code: [ctrl-select] code timeline to show word cloud for text assigned to that code

Filter by keyword: [ctrl-select] word in word cloud to show its “keyword in context” view

Figure 5: Some of the filtering options available between the timeline and text views in VizScribe.
The users can focus on specific parts of the datasets by filtering, say, the word cloud display by
speaker or by the assigned code. They can also directly select a section of the transcript, which
updates the word cloud to the selected text, providing an overview of the text. Finally, a keyword in
context (KWIC) view of a word of interest provides a way to understand the context of its use in
the transcript.

highlights all corresponding lines in the text and timeline view of the transcript.
This allows the user to scroll around on the transcript, or skip to the timestamps
of interest in the video to examine the data for patterns. Selecting a line on
the transcript, when done through a keyboard combination, skips the video to
the timestamp corresponding to that line, allowing the user to view any activity
of interest occurring around the time. It also allows the user to check for any
temporally co-occurring item of interest in the timeline visualizations.

Such interactions also allow for the filtering and details-on-demand tasks
specified by Shneiderman (1996). Filtering is the removal or de-emphasis of
uninteresting items, allowing users to focus on their interests. Details-on-demand
refers to obtaining details of a particular selection, usually displayed on separate
pop-up windows. In VizScribe, filtering is achieved in several ways: selecting
a block of text in the transcript updates the word cloud to contain words from

15

code definition

timeline

updated

code view

Defining task

Idea generation

Gender roles within the game

Development of war theme

Location of game play

Game strategy

Audience of game

Instruction from outside group

Procedural discussion

P1: Curriculum Major

Analysis of scope

Self-organization of design protocol

Design space categorization

Category addition

Category analysis

Foresight

Retrospective

Reflective

Category exploration

Vertical

Horizontal

Instances/Analogies

Decision

Detailing

Review of technique

P2: Design Major

code assignment

code timeline view

participant-defined codes from the study

assign code

Figure 6: Coding in VizScribe and sample codes generated by participants from our formative stud-
ies. The screen captures from VizScribe on the left show the code definition and code assignment.
The hierarchical codes on the right were defined by the participants (P1 & P2) in the formative
study. Though using the same dataset for the coding task, the participants produced very diverse
codes, based on their research backgrounds (curriculum development vs. design).

only the selected block. This filtering is extended to speakers and coded sections
of the transcript: selecting a speaker (with a keyboard shortcut) on the transcript
timeline, updates the word cloud to only show words spoken by that speaker, while
selecting a code from the coded timeline view updates the word cloud in the same
way. VizScribe has two forms of details-on-demand tasks: selecting a word in
the word cloud (through a keyboard shortcut) generates a keyword in context view
showing text immediately preceding and succeeding every occurrence of that word,
allowing the user to identify patterns in the context of utterance of that word. These
and other filtering interactions are shown in Figure 5. A similar selection of an
item in the sketch activity timeline shows a larger view of the sketch in a separate
window, allowing the user to examine its details.

4.2.3. Code
Typically, this data exploration is followed by the categorization of utter-

ances and behavior, and coding or annotating these with the identified categories.
VizScribe is provided with a text-entry field for determining such code. Hierarchies
of code are encoded by the user through the use of tabbed indentations in the text
entry. Once a code is defined, they are assigned to a selected block of text through
a context menu. A unique color for each code allows the coded transcript text to be
highlighted on demand, as shown in Figure 4(d). At any stage, the coded transcript

16

can be exported as a comma-separated value (CSV) file for use with other tools.
Figure 6 shows the coding process and sample codes created by two participants
in our formative studies. The diversity of the code generated and the hierarchies
formed show how VizScribe supports open, axial coding practices.

5. Framework Implementation

The introduction of visualization libraries such as D3.js (Bostock et al., 2011)
has resulted in the web browser emerging as an appropriate platform for infovis,
for both collaboration and dissemination. We chose to implement VizScribe as a
web-based framework, with the data uploaded and stored at the server, and then
processed and visualized at the client end. This implementation has the added
advantages of platform independence, minimal installation requirements, and for
future extension into a collaborative visual analytics framework.

The application is hosted from a Node.js5 server. Design activity data can be
uploaded to this server by an analyst using VizScribe to create a coding session.
In the current interface, coding sessions are automatically saved at the server (in
the form of data logs), but are not retrievable by the framework, so support for
multiple sessions and multiple users is yet to be implemented. The data is cached
and hosted for all client web browsers running the VizScribe interface. Almost all
data processing into structural and graphical elements for the visualizations occurs
at the client end. All visualization elements in VizScribe have been developed
using HTML5 and JavaScript, with the visualizations generated primarily using
the D3 library.

From the server, the video is streamed, on demand, to an open-source HTML5
video player called Video.js6. The interface thus never stores the entire video but
only chunks of it at the current playhead, which can be paused, reversed, or fast
forwarded. This protocol is therefore scalable to large video sizes and was handled
through websockets, specifically by using the socket.io7 library.

The data processing pipeline is shown in Figure 7. Input data is first uploaded
to the server in the form of video and a transcript file, with additional time-stamped
data including, but not restricted to sketch logs and corresponding image files
of sketches, instrumentation logs and activity logs. While it is essential that the
transcript file includes timestamps, speaker identifiers for each line of spoken

5http://nodejs.org/
6http://videojs.com
7http://socket.io

17

- - - - - - - - - -
- - - - - - - - - -
- - - - - -

video + sync. transcript

time-stamped data

sensor data

user log

sketches

<html>
…
……

</html>

function(){
…
……

}

+

update templates to

data/visualizations

determine

visualization

type define codes

[csv]

export data

code data

iterate

design researcher/programmer qual. analyst

identify data customize & link

visualizations
interactively explore datasets code

Figure 7: Visualization pipeline used in the VizScribe framework. The standard inputs (required)
are in the form of a video and a timestamped transcript. The VizScribe web application generates a
default timeline and word cloud visualization for the transcript. Predefined code “templates” cater
to other timestamped code, where the researcher, based on step-by-step instructions in the VizScribe
Wiki, can iteratively customize these templates to explore different interactive visualization forms.
Once the visualizations are finalized, the researcher can begin coding the transcript and exporting
the coded data to a comma-separated value (csv) file.

text are optional. The current data import requires transcripts to be in a comma-
separated value (.CSV) format, but is extensible to include other formats such as
the SubRip (.SRT) format or closed captioning formats.

All log files, including sketching activity logs, need to have timestamped
entries, and corresponding references to additional media where applicable, such as
sketches or images. These additional media files, which can include images, vector
graphics, and notes, are uploaded as a single archive. This upload mechanism,
showcased with sketches in Figure 7, is extensible to the other media types.

The transcript is reformatted into objects as specified under the document
object model (DOM), ensuring cross-browser compatibility. In addition, this
allows each object of the DOM to be programmatically accessed. VizScribe uses
the JQuery library8 to easily access and manipulate DOM elements, and implement
the interactive linking between objects as discussed in the previous sections.

8http://jquery.com

18

server code
Functions:

client code
(data upload)
Functions:

client code
(main interface)

Functions:

Main interface (html)Data upload page (html)

video upload

transcript upload

activity1 data upload

activity2 data upload

video display

transcript display

transcript timeline display

actvity1 timeline display

Handle video

handle transcript

Handle activity1 data

Handle activity2 data

handle coded data

word cloud display

code generation

code assign/display

actvity2 timeline display

new data upload

handle new data

new timeline displayNew functions to be written to handle
new datasets

Existing functions to be modified to
customize visualizations

Figure 8: An overview of the high-level functions in VizScribe, showing the functions that need to
be modified in order to edit or customize existing timeline visualizations, and functions that need to
be added in order to create new timeline visualizations. Figure 9 shows conceptually how these
visualizations can be customized. Templates for functions are also available in the VizScribe source
code page (see footnote 8) with detailed instructions on its Wiki.

5.1. Customizing and Extending VizScribe
Timeline entities are parsed and mapped to attributes of D3 graphical objects,

aligned with the video timeline. We take advantage of D3’s data operator, a
format-agnostic array of values that are linked to visual elements displayed on the
screen. Figure 9 shows how a timeline dataset is mapped on to a D3 object. This is
also the means behind VizScribe’s extensibility: new time-series datasets can be
represented in an appropriate visualization by adapting any of the existing time-
series visualization classes, or making use of code templates made available along
with the source code9, with detailed instructions on customizing and extending
VizScribe. While the step-by-step instructions on extending VizScribe lay beyond
the scope of this paper, and are available in the Wiki accompanying the source
code, this section will provide a brief overview of the process.

Figure 8 shows the high-level functions in VizScribe’s code, highlighting the
functions that need to be modified to customize existing timeline visualizations,
and the new functions that need to be added in order to extend VizScribe to create

9https://github.com/senthilchandrasegaran/vizscribe

19

new timeline visualizations.
Protocol studies are no longer just about video recordings and transcripts. The

use of sensor data to study designers to better understand how they think, plan,
interact, and make decisions, is not new. For instance, Göker (1997) used EEG
sensors to correlate behavioral experiments with novice and expert designers and
electrophysiological experiments using EEG sensors to find that novices use more
of their reasoning (frontal lobe activity) to solve problems, while experts use
visual recognition (parietal lobe activity) to draw on their experience to achieve
the same. Similarly, Bi et al. (2015) use eye-tracking data to understand the
forms of visual stimuli that affect design decision-making in test “game” scenarios.
Finally, wearable sociometric sensors (Olguı́n et al., 2009) are being used to study
social behaviors within groups, e.g. Gloor et al. (2012) or even provide real-time
mediation of brainstorming sessions to ensure equal participation (Kim et al., 2008).
We use these sociometric sensors in our user study.

To illustrate how VizScribe can be extended to include such data, Figure 9
shows how the timeline elements can be mapped to data elements in the case
of (a) discrete time series data measured over intervals of time, such as speech
participation measures, (b) continuous or streaming data such as EEG sensor
readouts, and (c) multi-dimensional data that have temporal components, such as
eye-tracking data or user behavior logs that require additional visualizations in
addition to time-series visualizations. Standard event controllers are available that
can be changed to determine actions to perform when a hover or select event occurs.
Selecting an appropriate visualization is an iterative process. By experimenting
with the various geometric entities available in D3, appropriate visualizations can
be explored.

We envision VizScribe to be used by design researchers, who, with some
programming background, will be able to adapt the visualizations to forms of
data pertinent to their work. As mentioned earlier, VizScribe’s source code page
has templates for the required functions, and a detailed Wiki with instructions on
installation, use, customization, and extension of the framework.

6. Framework Evaluation: Overview and Rationale

The goal of VizScribe is to support protocol analysis using a visual analytics
approach by providing interactive visualizations that provide multiple modes of
exploring the data. Given this focus, we sought to first understand the utility of the
visualizations when the analysts are given a low-level coding task. Our formative
studies thus focused on relatively lower-level and smaller-scale coding tasks that

20

class speechPlotData{
timestamp
speakerIndex
speechDuration
speechValue
speaker

};

speech data object graphical object

d3.rect {
x,
y,
width,
height,
fillColor

}; width

x
y height

fillColor

visual element
(rect)

class eyetrackData{
timestamp
sampling window
fixation (time)

xloc,yloc
};

d3.rect {
x
width
height
opacity
xloc,yloc

};

eye tracking data object graphical object

speech participation time

series

eye tracking heat map

(detailed view)

class EEGData{
timestamp
theta
participant

};

d3.path {
x,
y,
fillColor

};

EEG time seriesEEG data object graphical object

x

x

y
fillColor

discrete time series dataa

continuous time series datab

multidimensional data with a temporal componentc

fixation time

series

visual element
(path)

visual element
(rect)

height

d
e
ta

ile
d
 v

ie
w

width

visual element
(rect)

xloc

yloc

opacity

Figure 9: Extending or customizing a timeline visualization to fit custom time-series data involves
mapping attributes of that data to a corresponding visual object. VizScribe uses D3 for this purpose,
whose data structure makes this mapping possible. The above figure illustrates how this extension is
possible for three main categories of data, namely a discrete time series data where data is sampled
at intervals, b continuous time series data where data is read in a stream, and c multidimensional
data with a temporal component, where a time series visualization needs to be augmented with
additional visualizations. For all three categories, the above figure illustrates ways in which the
VizScribe timeline views can be extended to incorporate such data by mapping data attributes to
geometric attributes of appropriately chosen D3 elements. Hover/click behaviors are then specified,
allowing for interaction with the data.

would help us improve the framework. We followed this up with a summative
study that contained a more diverse set of tasks for a full-fledged dataset. This
section provides an overview and justification of the studies performed, while the
next sections detail the methods, participants, and findings from these user studies.
The sequence of studies is outlined below:

• Formative Study: This study sought to identify weaknesses in the design
and implementation of VizScribe, which helped us separate useful visual
representations and interactions from redundant ones, and enhance those that
showed promise. We performed two formative studies:
(a) Prescribed coding, to assess how participants navigated the framework
given a specific coding task (see Section 7.1); and

21

(b) Open coding to assess the ability of the framework to support analysts
with diverse analysis goals (see Section 7.2).

• Framework Redesign: Based on the findings from the formative studies,
we implemented changes to the framework (see Section 8).

• Summative Study: This helped us understand the versatility of the interface
in answering certain closed- and open-ended questions of the kind that
interest design researchers (see Section 9).

For each study, a brief demonstration of VizScribe and its features was pro-
vided to the participants, after which they were allowed as much time as they
needed to familiarize themselves with the interface. On average, participants took
approximately 60 minutes to complete the tasks in the formative evaluation, and
75 minutes in the case of the summative evaluation.

6.1. Context: Data from Design Sessions
Given our goal to understand design processes through a variety of data forms,

we recorded two student teams each comprising four members) working on a
design task as part of a mechanical engineering graduate course on product de-
sign. The teams were recorded when working on a design modification assign-
ment that required the team to first categorize a given toy according to its “play
value” (Kudrowitz & Wallace, 2010), and then modify it to extend and/or change
the play value. The teams used skWiki (Zhao et al., 2014)—available as open
source10—to create, exchange, and modify sketches of their ideas, enabling us
to log all sketching activity during the design session. We created a timeline
visualization of the sketching activity from the skWiki sketch log data as shown
in Figure 4(c). Both the design sessions were also video recorded with the con-
sent of the participants. One team was also fitted with wearable sociometric
sensors (Olguı́n et al., 2009; Kim et al., 2012) to record their speech patterns and
body movements (Fig. 10).

We used a 15-minute video segment and sketch data from the team without
sociometric sensors for the formative evaluation, and the complete 60-minute seg-
ment and associated data from the team with sociometric sensors for the summative
evaluation. This decision was in accordance with the goals of the evaluations, with
the formative evaluation focusing on studying the efficacy of providing temporal

10https://github.com/karthikbadam/skWiki

22

Figure 10: The wearable sociometric badge used in the design session. The badge, developed
by Sociometric Solutions (now Humanyze: http://humanyze.com), measures individual
biometric data including speech events and body movement, as well as social interactional data
such as face-to-face interactions, conversational overlaps, turn-taking, and proximal connections.

and transcript views for coding, and the summative evaluation for understanding
high-level user behavior patterns using multiple and integrated forms of data.

In both studies, VizScribe was run on a Google Chrome browser and displayed
on a 20-inch LCD screen. The data was uploaded and rendered on VizScribe before
the start of the experiment.

6.2. A Note on the Study Rationale
As we have previously noted, VizScribe represents a visual analytics approach

to support the analysis of data provided by protocol studies, and not a CAQDAS
tool unto itself. This distinction is important, as VizScribe is an exploration of the
techniques existing CAQDAS tools can use in order to better support multimodal
data analysis.

Our evaluation of the framework thus focuses on the utility of the visualizations
and interactions designed with the “orient–focus–code” paradigm in mind, first
in parts in the formative study, and then as a whole in the summative study. We
chose to not conduct a comparative study with existing CAQDAS tools as it
would be counterproductive to the goal of this work: On the one hand, existing
CAQDAS tools do not use visual analytics approaches, while on the other hand,
VizScribe does not provide the full-fledged protocol analysis and coding support
that CAQDAS tools do.

For example, datasets such as sketching logs, or activity data from a body-
mounted sensor, are very difficult, if not impossible, to meaningfully analyze using
NVivo or other CAQDAS tools. While most CAQDAS tools include features

23

to integrate multiple datasets, their focus is on consolidation rather than visual
coherence. This also applies for research prototypes such as Chronoviz, which
focuses on event/activity timelines. For example, the ability to filter the video
timeline through word occurrences in order to, say, focus on all the instances
of the team discussing a particular concept, is a function that is not available in
such tools, and is therefore not typically used during protocol analysis. While the
advantage of an effective visual analytics-based design of CAQDAS tools may be
illustrated through a comparative study, it would be premature for us to attempt it,
when our focus is to determine what a visual analytics-based approach to protocol
studies entails. We thus focused on evaluating VizScribe’s usefulness in qualitative
analyses, particularly the effectiveness of the interactive data visualizations.

7. Formative Studies

We conducted formative studies to evaluate the use of the interface in perform-
ing specific tasks in data navigation, and to understand the effectiveness of the
framework in performing open-ended exploration and coding of the data.

We first used a prescribed coding scheme, requiring participants to identify
certain kinds of behavioral interaction in the design teams during a 15-minute
segment of a team brainstorming session. In the second study, participants were
given a freer rein to code interactions or behaviors that they found interesting,
following an open coding scheme. Our goal was to examine how VizScribe was
used by analysts with different analytic goals, and to identify functions that could
be changed, removed, or added to the framework.

7.1. Study I: Prescribed Coding
Closer in nature to selective coding Corbin & Strauss (1990), we called this task

prescribed coding as we provided a core set of behaviors that the participants were
asked to code. We recruited 6 paid participants (5 male, 1 female), aged between
27 and 32 years. All were graduate students, three of whom were experienced
in ethnographic analysis, and the remaining three experienced in design process
analysis. Two of the participants had prior experience in protocol analysis.

Participants were given 60 minutes to familiarize themselves with the data
shown in the VizScribe interface (video, transcript, and sketch logs). They then
used the transcript data and coded instances of idea generation, when a subject
in the video comes up with an idea for the toy design, idea extension, when a
suggested idea is modified or developed, and idea critiquing, when feedback is
provided to a suggested idea.

24

Following the coding session, participants answered a set of questions providing
feedback on their experience with the interface. This included both open-ended
questions on their overall experience and feedback, and their rating of the usefulness
and ease of use of VizScribe’s features on a five-point Likert scale.

7.1.1. Results
In general, participants liked the way multimodal data was presented, and found

it easy to navigate in the interface. One participant summarized: (VizScribe is a)
“useful tool for observing multiple modes of data. I was able to relate the transcript
to actual body language from the video and sketching activity. I liked how I needed
minimal instructions to use the tool. A browser based environment really helped,
as I was familiar with most browser based interactions.”

Among the participants, 100% reported that the interactive transcript was the
most useful feature of VizScribe, while 66% reported that the word cloud was
the least useful. This is partly explained by a lack of an appropriate motivation
to use the word cloud: the visualization is more useful for an overview of a large
body of text, and a transcript of a 15-minute conversation was small enough that
the participants could simply read through it. In the temporal views, 83% of
the participants reported the sketch timeline was intuitive but not relevant, partly
because this view was not linked to other visualizations, and partly because of the
small number of sketches.

Finally, with regards to coding the transcript, participants expressed the need to
assign multiple overlapping codes to the same sections of the transcript, and to to
assign codes at a word-level granularity in the transcript, i.e. select a part of a line
and assign a code to that part.

7.2. Study II: Open Coding
For the second study, to assess the breadth and flexibility of VizScribe, we

recruited two paid participants (one male, one female), both graduate students
aged 29 and 34 years. The first participant, a curriculum and instruction student
in art education, had prior experience with coding in NVivo, and the other, a
student of mechanical engineering majoring in design, had no prior experience in
coding or protocol analysis. They were asked to use an inductive open coding tech-
nique (Glaser & Strauss, 2009)—which was first explained to the participants—to
identify interesting actions, processes, or behavior, code such events, and cate-
gorize them hierarchically by simply indenting the respective codes in the code
editing text box. Participants had 60 minutes to perform this task, followed by an
open-ended survey where they discussed the coding process they used and their

25

feedback on VizScribe’s features. Our goal was to evaluate the utility and ease of
use of VizScribe in a real-life coding scenario, and identify challenges that arise in
data representation and coding.

7.2.1. Results
Both participants found it easy and intuitive to create multiple code hierarchies.

The code sets created by each were different, reflecting their different backgrounds
and research orientations, which supports the goal of VizScribe providing support
for grounded theory practice in open coding. One of the issues the particpants
faced was the representation of codes on the transcript when numerous codes
were created. The color-coded display seemed to become cognitively difficult
to process when there were 10–12 colors, one for each code, painted over the
transcript. Additionally, the transcript would retain the color of only the most
recently-assigned code, thus hiding instances of multiple codes assigned to the same
section of the transcript. By comparing the codes generated by both participants,
we found that both viewed the same dataset for approximately the same duration,
and yet created markedly different codes (Figure 6).

8. Framework Redesign

Results from formative studies helped identify features that were useful in
exploring multimodal data, and features that needed refinement. Based on our ob-
servations and from the participant feedback, we made the following enhancements
to the framework.

Scale-robust timeline view: The transcript timeline visualization became less
readable when longer videos of around 60 minutes were used. The visualization
was thus extended to indicate, through color codes and position, the different
speakers in the visualization. A “magic lens” local zoom was added to the view for
easier selection of a visualized element.

Text filters: The word cloud view was made more useful by introducing more
techniques for “focus” tasks explained in section 4.2. This included the filtering
tasks explained in the section, such as word clouds specific to one speaker’s
utterances, word clouds specific to certain coded parts of the transcript, or a
dynamic word cloud that updates itself to a selected block of text.

Interactive code linking: The color limitation that was faced by using more
than 12 codes was mitigated to an extent through enhanced interactions. The code
colors on the transcript were made non-persistent, i.e. they “faded” two seconds
after coding, so that transcript legibility was not compromised. By hovering or

26

clicking on a code in the coded timeline view, users could reveal the corresponding
color on the transcript. This ensured that the transcript was overlaid with only one
code (color) at any point of time, making it visually less cluttered and circumventing
the problem of overlapping codes identified in the open coding study.

Extensibility: The extensibility discussed in section 5 was developed as a result
of participants suggesting more intuitive links between the sketch timeline and
the rest of the time-sequence data, and suggesting other datasets that could be
visualized and connected to the VizScribe timeline. We thus linked the sketch
timeline to the video timeline to enable skipping to a particular time when a sketch
was saved on the server by simply clicking on the corresponding timeline element.
The extensible, interactive timeline views were developed as a generalization of
the timeline views.

We conducted the summative study after implementing these changes to the
framework.

9. Summative Study

Summative evaluations are useful when one needs to understand high-level
behavioral trends, and mental models of participant behavior (Hix & Hartson,
1993). In this study, our goal was to observe how participants use the interactive
visualizations of multimodal data to develop an awareness of events in the design
session, as well as an interpretation of the activities, roles, and processes revealed
by the data. This helped us understand the different means by which analysts
approach design protocol studies, and the versatility of the visualizations used in
VizScribe to cater to these means.

9.1. Participants and Procedure
We recruited ten paid participants for this study (5 female, 5 male), all between

23 and 36 years of age. Six were PhD design majors in mechanical engineering,
two were engineering education majors (one master’s and one PhD), one was a
master’s student in computer information technology with a background in teaching
undergraduate design courses, and one was a post-doctoral researcher in educational
psychology, focusing on design education. Nine of these participants were familiar
with qualitative analysis, ranging from document analysis, to interview coding,
to analyzing videos of participant gestures, and one had prior experience with
CAQDAS tools (NVivo and Dedoose). Four of the participants had used visual
analytics tools such as Jigsaw (Stasko et al., 2008).

27

All participants used VizScribe to complete a set of seven tasks to analyze a
60-minute design session video. In addition to the video, transcript, and sketching
data in this study, the data visualizations also included sociometric sensor data that
captured the activity levels (from accelerometer sensors), and speech participation
(speaking to listening ratios) of each participant. The seven tasks to be completed
were:

T1 Identify the sketch/sketches that represent the final idea chosen by the team.

T2 Identify the team member that originated the idea that eventually evolved
into this final idea, and code the part of the transcript that refers to the first
mention of this idea.

T3 Did the team discuss other ideas before they narrowed down on one final
idea? If so, describe these ideas.

T4 Code the parts of the transcript that you identify as the start and end of
the team’s divergent process (ideation) and the start and end of the team’s
convergent process (evaluation and selection).

T5 Using the word cloud, identify themes in each team member’s utterances.

T6 Identify and code three instances with no speech overlap between team
members, and three instances where there is speech overlap. What behavior
differences can you observe between the two categories?

T7 Using the activity timeline, identify with timestamps three unique instances
of activity or movement, and describe them.

Tasks T1 and T2 have components that can have “correct answers” or answers
that are comparatively less open to interpretation. We used these tasks as “ground
truth” tests, to determine if the VizScribe interface helps the participants glean
such information. Tasks T3 through T7 were open-ended questions designed to
assess how VizScribe is useful in understanding aspects of the presented data that
are not immediately apparent from the video and the transcript alone. T3 and T4
were chosen to verify whether the additional data representations were useful when
the task would otherwise involve sifting back and forth through the transcript and
video. For instance, the sketch timeline along with the transcript could be relevant
to T3, whereas the interactive word cloud could be used to filter the transcript when
attempting T4. T5 was intended to test if the word cloud could provide useful

28

overviews, and T6 and T7 were included to draw the participants’ attention to the
sociometric sensor data to determine the utility of the data and the visualizations.

We asked participants to complete surveys at multiple points during the data
analysis session, so that we could provide probes pertaining to specific tasks
immediately after the task was executed. The final survey asked participants about
the utility of specific features such as the coordinated data representations, and the
interactive transcript display, as well as an overall rating of VizScribe using the
System Usability Scale (SUS) (Brooke, 1996).

9.2. Results and Discussion
In analyzing both participant feedback and the logs of their interactions with

the different features of VizScribe, we found a few patterns in the features of
VizScribe that they used for certain kinds of tasks. We found that they used the
filtering aspect of the word cloud to search or navigate the dataset for specific
answers. On the other hand, for the more interpretive tasks, participants tended
to use different features for the same tasks, illustrating a richness that VizScribe
affords in visualizing data. Finally, the alternate, nonverbal timeline visualizations,
provided a new lens for participants with which to view the design process, and
form new associations between kinds of behavior. These and other findings are
discussed in this section.

Table 1: Mean task completion times with standard deviations.

Task Duration (min)
Mean SD

T1 Identify final idea 06:45 03:42
T2 Identify originator of final idea 09:07 03:27
T3 Describe other ideas discussed 11:14 04:55
T4 Identify start & end of ideation & selection 19:20 08:27
T5 Identify themes for each team member 09:08 03:47
T6 Describe 3 instances with & without speech overlap 12:33 04:58
T7 Describe 3 unique activity instances 05:58 02:45

Participants spent an average of 75 minutes for all tasks combined, but there
was considerable variation between participants across the tasks. On average, T3,
T4, and T6 were the most time-consuming tasks. T3 and T4 were expected to take
more time as they required exploration of almost the entire design process using
the speech and text timeline. T6 required the use of speech overlap data from the
sociometric sensors, and the high number of the overlap events made it difficult for

29

task 1

word cloud

video seeking

transcript timeline

transcript

assign codes

sketch timeline

speech overlaps

activity timeline

task 2 task 3 task 4 task 5 task 6 task 7

user
interaction
distribution

Figure 11: Task-wise usage of the different elements of VizScribe, aggregated over all participants.
Views such as the word cloud, the transcript timeline, and the sketch timeline can be deemed the
most versatile, since they are used across most of the tasks. The distribution shows that most of
the exploration of the provided dataset occurs through the “sketch timeline”: the view showing the
creation and development of every sketch by the subjects in the video.

the participants to sift through the view. Table 1 presents the mean task times for
each of the seven tasks.

Examining participant performance in these tasks, we found that among the
“closed-ended” tasks, all ten participants correctly identified the sketch chosen
by the team (T1), and 80% of the participants correctly identified the author of
the corresponding idea (T2). Even the two who answered differently were not
necessarily wrong: they chose the participant who had sketched the idea, and not
the member who originated the idea. The consistency of the answers to these tasks
attests to the veracity and legibility of the data representations.

From the analysis of the participant activity logs, we can see that the transcript
timeline and the sketch timeline were the most used, especially in tasks T1 through
T4. These were tasks that required the participants to understand the process
followed in the recorded design session (Figure 11). The word cloud, however,
was used sparingly for this analysis. In design protocol analysis, sketches and
verbalizations are the chief ways in which designers externalize their thoughts, and
it thus follows that interactive timeline visualizations of this data would be the
most used to understand the process. Tasks T5, T6, and T7 were designed to utilize
the word cloud and the speech participation and activity timelines respectively.

The most interesting interactions of the participants involved filtering and navi-
gating text views, using different visualizations for the same task, and observations
of the video-recorded behavior by interacting with activity sensors, which we
discuss briefly below:

Filtered navigation: Participants used the word cloud as a filter for the tran-
script view, especially when performing a focused search for a specific idea gener-

30

ated by the design team. In completing T2, for example, after identifying the final
product was a board game, the participants used the word cloud and its link with the
transcript (text and timeline) to filter for all occurrences of the word “board”. One
participant explains: “there were many cases where I saw an interesting pattern
on the timeline, watched the video, read the transcript, found a word, and then
saw where else it occurred in order to see if there was a pattern.” By focusing
on these filtered sections of the transcript, participants were able to identify the
right instance at which the idea was first discussed. Task T5 explicitly required the
use of the word cloud, where participants were to identify themes from each video
subject’s utterances, preferably using the “filter by speaker” technique explained
in Figure 5. However, in addition to this, three participants tagged the same subject
as the leader of the team captured in the video—an unexpected and interesting
use of the word cloud to determine subject role/personality. This form of subject
characterizations through a summary view, while convenient, can be antithetical to
the rigor of good coding practice. This is the space that the VizScribe framework
occupies: it allows the analyst to skim through a larger dataset, identify questions
of interest, and focus on these questions while examining the details.

Multiple approaches to explore datasets: We also observed that the multiple
views of the data allowed participants to use diverse analytic approaches: different
participants oriented themselves differently in the dataset, and thus picked different
“entry points” – most notably, the transcript timeline, sketch timeline, and transcript
text views (see Figure 11). This makes sense: conceptual design predominantly
involves sketches and explanations of these sketches, when working in a team.

This use of diverse entry points has the potential to support broader research
questions, accommodating the analyst in choosing from a variety of paths from
which to approach the questions. In the example above, providing representations
of both speech and sketch activities to the analysts allows them the flexibility of
choosing the data representation based on the research question being asked. It
would thus seem that it is not just the dataset that determines the most useful
representation, but also the user who determines it. While this may seem obvious,
this insight is often missing from most CAQDAS tools: there are few alternate
representations of the same dataset.

Temporal correlation of multiple data streams: Task T7 required participants
to pay attention to the activity timeline view, and note unique instances and cor-
responding subject activity in the video. This was done to raise the participants’
awareness of the usefulness of such representations. Sure enough, participants
found that they could not only make note of larger events such as subjects leav-
ing the room, but also smaller instances of them leaning across a table, or even

31

1
strongly
disagree

2 3 4 5
strongly
agree

I think that I would like to use this system frequently

I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a technical person to be able to use this system

I found the various functions in this system were well integrated

I thought there was too much inconsistency in this system

I would imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could get going with this system

Higher is better

Lower is better

Figure 12: The System Usability Study (SUS) scores shown category-wise, aggregated over all
participants. Plots in orange are better when lower, while plots in blue are better when higher. An
mean rating of 75.5/100 was obtained.

picking up a toy from the table. One participant remarked “traditionally, it has
been difficult to track down the correlation between verbal behavior with gestures,
sketching behaviors. With the help of these features, researchers would have a
much easier time to pinpoint the relations between these behaviors.” Interactive
visualizations of such data thus provides an opportunity to assess both macro-level
behaviors such as entering and exiting spaces, as well as micro-level behaviors
such as gestures and object manipulation.

The framework usability received a mean rating 75.5/100 on the SUS, which is
“acceptable” on the acceptability range and “good” on the adjective ratings (Bangor
et al., 2009). Figure 12 illustrates the response distribution for the SUS. The
average SUS rating by participants with a prior background in infovis was 79.4,
while the rating by participants without this background was 72.9. While there
is a fair difference between the two group ratings, both scores fall within the
same acceptability and adjective ranges as the overall mean rating. The difference
between the groups is understandable given the short exposure the participants had
to the interface: participants more familiar with interactive visualizations would
be expected to adapt quicker to the interface. A more accurate measure of the
usability of this system will need a longer-term study, which is outside the scope
of this work. Participants’ subjective feedback was largely positive, with the best
summing-up provided by one participant who had worked with CAQDAS tools
(but had no background in infovis): “The tool is a great synthesis of what other
tools have been missing, as I have used them.”

32

10. Implications for Qualitative Analysis

The process of qualitative data analysis is aptly described by Creswell (2012, p.
182) as a “data analysis spiral.” This spiral represents organization and management
of data, reading, reflecting, annotating the data, identifying and comparing contexts
and categories, interpreting and describing, as well as representing and visualizing
the data. Data analysis is an iterative process, involving alternating deep dives into
the data, perusing and annotating to get a sense of the data as a whole, examining it
in parts to identify patterns of interest, as well as winnowing it to select information
of relevance. Drisko (2013) emphasizes how qualitative data analysis software has
made possible research endeavors into multimedia data, by allowing the display of
images, audio, and video, and the relationships between data that can be inferred
directly on images or indirectly on video/audio timelines.

A visual analytics approach such as ours allows qualitative researchers to
visualize and interpret design behaviors through new data forms that are linked
to traditional text and video data. These data provide the grounding for “thick”
descriptions of design behavior (Geertz, 1973) that provide contextualized explana-
tions. For example, an unusually high level of movement activity on the timeline
can be directly queried to view in the video the movement of the design team into
or out of the room, or to a display wall to collaboratively sketch or discuss a design.
The sketch timeline can reveal, at the same time, the design under discussion.
Selecting the transcript around this time updates the word cloud to provide an
overview of key concepts under discussion in that moment.

Sensors such as eye-tracking sensors, EEG sensors, and inertial measurement
units provide data that allow additional dimensions to be considered and new
insights gleaned. VizScribe provides a general framework for the visualization and
analysis of rich datasets, allowing the researcher to create meaningful visualizations
of new data forms (as shown in Figure 9), that are linked to traditional text and
video data. We previously discussed how this enables functions such as filtered
navigation, multiple approaches to explore datasets, and temporal correlation of
multiple data streams that allows participants to access, interpret, and integrate
sensor data. VizScribe thus moves beyond existing computer-based qualitative
analysis tools to provide support for analyzing both traditional as well as emerging
forms of qualitative data.

Qualitative data analysis requires that the analyst familiarize themselves with
every bit of the data. VizScribe provides a framework to allow a deeper, holistic,
and integrated analysis and interpretation of this data and its connection to other
related data. It supports micro-level analysis of specific temporal slices, using cross-

33

sectional data as well as macro-level longitudinal timeline analysis of aggregated
data. By viewing synchronized and integrated data and understanding them in
specific temporal and textual contexts, interpretations of design behavior are more
fully contextualized and better reflective of the design process.

11. Limitations and Future Work

VizScribe has been designed for navigation and coding of data that otherwise
cannot be easily visualized into a single, dashboard view. To an extent, this requires
pre-processed data, for example, all data needs to be time-stamped, transcripts
benefit from speaker identification, and so on. While the coded data can be exported
from VizScribe for additional analyses, VizScribe would be a more effective tool if
it offered end-to-end processing and analytics required for qualitative analysis. We
envision the following future enhancements to VizScribe:

Preprocessing: This involves both the implementation of algorithms such as the
Penn Phonetics Lab Forced Aligner (Yuan & Liberman, 2008) for synchronizing
the transcript to the audio track, as well as allowing interactive selection and
customization of the information visualizations used. The current implementation
allows customization when performed programmatically. However, based on the
data imported (keylogs, browsing data, biometric data), the user should be allowed
to interactively select appropriate visualizations.

Data-aware annotation and coding: VizScribe currently has the framework
for allowing multiple timeline visualizations, but not timeline-level coding. This
is particularly important for coding sketches, movements across the design space,
gestures, and so on. Our future plans include a data representation of codes ap-
plied directly on the timeline, and consolidated together with all representations.
Additionally, the absence of data—be it radio silence, video inactivity, or audio
silence—is often as significant as the presence of data. Thus, gaps in the visual-
izations, where no geometric or text entity is displayed, need also be amenable to
navigation and coding.

Analytics: The next step for VizScribe would be to incorporate visual analytics
to process the data for a higher-level exploration. This includes, but is not limited
to, features such as named entity recognition and tagging, parts-of-speech tagging,
semantic distance-based filtering of the transcript based on the defined codes.
Sociometric data would also benefit from such analytics to better support embodied
and socio-material interactions. Additional use of analytics would be in processing
the coded data to provide meaningful results. This can include inter-coder reliability

34

calculations and axial coding, which includes the ability to generate matrices to
compare instances tagged with intersecting codes.

Collaborative coding: VizScribe’s web-based implementation allowed us to
provide a platform-independent solution making effective use of data-driven repre-
sentations that are now available for the web browser. However, this client-server
framework also gives us the ability to enable collaborative coding. Participants
should be able to log in to access the same dataset and compare their coding process
with others. This can find application in training novices in the coding process,
where they can overlay their codes with that of an expert for comparison.

Dissemination: With visualization toolkits such as D3, the web browser has
already become a medium for both generation and dissemination of visual repre-
sentations. Future work in VizScribe will also look at means to export the final
data and analyses into reports or presentations.

12. Conclusion

We have outlined the requirements of design protocol analysis tools, emphasiz-
ing the need for building custom timeline views so that the analyst can set up their
own visual representations of design activity. We then presented VizScribe, a visual
analytics-based framework for representing and exploring design protocols. Our
framework bridges a gap that is currently not addressed by existing qualitative data
analysis tools, namely, the processing and presentation of new and emerging forms
of data such as sensor data and user log data. VizScribe imports video, transcript,
and other log data, and uses linked and interactive representations for the user to
navigate and explore, code, and export the data. We refined and enhanced visualiza-
tions and interaction modes of the framework by conducting formative studies. We
then performed a summative evaluation of VizScribe, through which we showed the
advantages of (a) filtered navigation, in helping identify context-specific patterns
in the multimodal data visualizations, (b) multiple ways for analysts to approach
the same dataset, and (c) supporting the identification of verbal and non-verbal
relations within datasets. Finally, we found that the transcript, timeline, and sketch
views were versatile visualizations, with custom views bringing newer ways of
navigating the dataset and obtaining newer insights.

Acknowledgements

This work is partly supported by the U.S. National Science Foundation under
grants IIS-1227639, IIS-1249229, IIS-1253863, IIS-1422341, and IIS-153953,

35

and the Donald W. Feddersen Chaired Professorship at the School of Mechanical
Engineering at Purdue. The authors are also thankful to the many participants
for their time, patience, and suggestions to improve this work, as well as to the
reviewers for their insightful comments and suggestions.

References

André, P., Wilson, M. L., Russell, A., Smith, D. A., Owens, A. et al. (2007). Continuum:
designing timelines for hierarchies, relationships and scale. In Proceedings of the ACM
Symposium on User Interface Software and Technology (pp. 101–110).

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores
mean: Adding an adjective rating scale. Journal of usability studies, 4, 114–123.

Bi, Y., Shergadwala, M., Reid, T., & Panchal, J. H. (2015). Understanding the utilization
of information stimuli in design decision making using eye gaze data. In Proceedings of
the ASME International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (pp. V02AT03A017–V02AT03A017).

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17, 2301–2309.

Brooke, J. (1996). SUS-a quick and dirty usability scale. Usability evaluation in industry,
(pp. 189–194).

Brundell, P., Tennent, P., Greenhalgh, C., Knight, D., Crabtree, A., O’Malley, C.,
Ainsworth, S., Clarke, D., Carter, R., & Adolphs, S. (2008). Digital replay system
(DRS)–a tool for interaction analysis. In Proceedings of the International Conference
on Learning Sciences (Workshop on Interaction Analysis).

Carpendale, M. (2003). Considering visual variables as a basis for information visualiza-
tion. Technical Report 2001-693-16, Department of Computer science, University of
Calgary Calgary, AB, Canada.

Collins, C., Carpendale, S., & Penn, G. (2009a). DocuBurst: Visualizing document content
using language structure. Computer Graphics Forum, 28, 1039–1046.

Collins, C., Viegas, F., & Wattenberg, M. (2009b). Parallel tag clouds to explore and
analyze faceted text corpora. In IEEE Symposium on Visual Analytics Science and
Technology (pp. 91–98).

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative sociology, 13, 3–21.

36

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five
approaches. Sage.

Diederich, J., Ruhmann, I., & May, M. (1987). KRITON: a knowledge-acquisition tool for
expert systems. International Journal of Man-Machine Studies, 26, 29–40.

Dinar, M., Shah, J. J., Cagan, J., Leifer, L., Linsey, J., Smith, S. M., & Hernandez, N. V.
(2015). Empirical studies of designer thinking: Past, present, and future. Journal of
Mechanical Design, 137, 021101.

Dong, A. (2005). The latent semantic approach to studying design team communication.
Design Studies, 26, 445–461.

Drisko, J. W. (2013). Qualitative data analysis software: An overview and new possibilities.
In A. E. Fortune, W. J. Reid, & R. L. M. Jr. (Eds.), Qualitative Research in Social Work
(pp. 284–303). (2nd ed.).

Duff, P. A., & Séror, J. (2005). Computers and qualitative data analysis: Paper, pens, and
highlighters vs. screen, mouse, and keyboard. TESOL Quarterly, 39, 321–328.

Elmqvist, N., Moere, A. V., Jetter, H.-C., Cernea, D., Reiterer, H., & Jankun-Kelly, T.
(2011). Fluid interaction for information visualization. Information Visualization, 10,
327–340.

Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations
of thinking during experts performance on representative tasks. In K. A. Ericsson,
N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge Handbook of
Expertise and Expert Performance (pp. 223–241). Cambridge University Press.

Fouse, A., Weibel, N., Hutchins, E., & Hollan, J. D. (2011). Chronoviz: a system for
supporting navigation of time-coded data. In ACM Extended Abstracts on Human
Factors in Computing Systems (pp. 299–304).

Geertz, C. (1973). In The interpretation of cultures chapter Thick Description; Toward an
lnterpretive Theory of Culture. (pp. 3–30).

Glaser, B. G., & Strauss, A. L. (2009). The discovery of grounded theory: Strategies for
qualitative research. Transaction Publishers.

Gloor, P. A., Grippa, F., Putzke, J., Lassenius, C., Fuehres, H., Fischbach, K., & Schoder,
D. (2012). Measuring social capital in creative teams through sociometric sensors.
International Journal of Organisational Design and Engineering, 2, 380–401.

37

Göker, M. H. (1997). The effects of experience during design problem solving. Design
Studies, 18, 405–426.

Goldschmidt, G. (1991). The dialectics of sketching. Creativity research journal, 4,
123–143.

Harrower, M., & Brewer, C. A. (2003). Colorbrewer.org: an online tool for selecting colour
schemes for maps. The Cartographic Journal, 40, 27–37.

Heer, J., & Shneiderman, B. (2012). A taxonomy of tools that support the fluent and
flexible use of visualizations. ACM Queue, 10, 1–26.

Henderson, K. (1998). The role of material objects in the design process: A comparison
of two design cultures and how they contend with automation. Science, Technology &
Human Values, 23, 139–174.

Hix, D., & Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability Through
Product & Process. New York, NY, USA: John Wiley & Sons, Inc.

Hoey, M., Scott, M., & Thompson, G. (2001). Patterns of Text. John Benjamins Publishing
Company.

Huber, G., & Garca, C. (1991). Computer assistance for testing hypotheses about qualitative
data: The software package AQUAD 3.0. Qualitative Sociology, 14, 325–347.

Isenberg, P., Tang, A., & Carpendale, S. (2008). An exploratory study of visual information
analysis. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (pp. 1217–1226).

Kim, T., Chang, A., Holland, L., & Pentland, A. S. (2008). Meeting mediator: enhancing
group collaboration with sociometric feedback. In The ACM Extended Abstracts on
Human Factors in Computing Systems (pp. 3183–3188).

Kim, T., McFee, E., Olguin, D. O., Waber, B., & Pentland, A. (2012). Sociometric
badges: Using sensor technology to capture new forms of collaboration. Journal of
Organizational Behavior, 33, 412–427.

Kudrowitz, B. M., & Wallace, D. R. (2010). The play pyramid: A play classification and
ideation tool for toy design. International Journal of Arts and Technology, 3, 36–56.

Li, Q., & North, C. (2003). Empirical comparison of dynamic query sliders and brushing
histograms. In Proceedings of the IEEE Symposium on Information Visualization (pp.
147–153).

38

Lu, C.-J., & Shulman, S. W. (2008). Rigor and flexibility in computer-based qualitative
research: Introducing the coding analysis toolkit. International Journal of Multiple
Research Approaches, 2, 105–117.

Manning, C., & Schütze, H. (1999). Foundations of Statistical Natural Language Process-
ing. MIT Press.

McPherson, J., Ma, K.-L., Krystosk, P., Bartoletti, T., & Christensen, M. (2004). PortVis:
a tool for port-based detection of security events. In Proceedings of the ACM Workshop
on Visualization and Data Mining for Computer Security (pp. 73–81).

Monroe, M., Lan, R., Morales del Olmo, J., Shneiderman, B., Plaisant, C., & Millstein,
J. (2013). The challenges of specifying intervals and absences in temporal queries: a
graphical language approach. In Proceedings of the ACM Conference on Human Factors
in Computing Systems (pp. 2349–2358).

Müller-Tomfelde, C. (2007). Dwell-based pointing in applications of human computer
interaction. In C. Baranauskas, P. Palanque, J. Abascal, & S. Barbosa (Eds.), Human-
Computer Interaction (pp. 560–573). volume 4662 of Lecture Notes in Computer
Science.

Newell, A. (1966). On the analysis of human problem solving protocols. In International
Symposium in Mathematical Methods in the Social Science.

Oak, A. (2011). What can talk tell us about design?: Analyzing conversation to understand
practice. Design Studies, 32, 211–234.

Olguı́n, D. O., Waber, B. N., Kim, T., Mohan, A., Ara, K., & Pentland, A. (2009). Sensible
organizations: Technology and methodology for automatically measuring organizational
behavior. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
39, 43–55.

Olsson, J., & Boldt, M. (2009). Computer forensic timeline visualization tool. Digital
Investigation, 6, Supplement, S78–S87.

Plaisant, C., Milash, B., Rose, A., Widoff, S., & Shneiderman, B. (1996). LifeLines:
visualizing personal histories. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (pp. 221–227).

Pourmohamadi, M., & Gero, J. S. (2011). LINKOgrapher: An analysis tool to study design
protocols based on FBS coding scheme. In Proceedings of the International Conference
on Engineering Design.

39

Robinson, A. C. (2008). Collaborative synthesis of visual analytic results. In Proceedings
of the IEEE Symposium on Visual Analytics Science and Technology (pp. 67–74).

Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., & Fischer,
F. (2008). Analyzing collaborative learning processes automatically: Exploiting the
advances of computational linguistics in computer-supported collaborative learning.
International Journal of Computer-Supported Collaborative Learning, 3, 237–271.

Rubin, S., Berthouzoz, F., Mysore, G. J., Li, W., & Agrawala, M. (2013). Content-based
tools for editing audio stories. In Proceedings of the ACM symposium on User interface
software and technology (pp. 113–122).

Sanderson, P. M., James, J. M., & Seidler, K. S. (1989). SHAPA: an interactive software
environment for protocol analysis. Ergonomics, 32, 1271–1302.

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on (pp.
336–343).

Stab, C., Nazemi, K., & Fellner, D. W. (2010). SemaTime – timeline visualization of time-
dependent relations and semantics. In Advances in Visual Computing (pp. 514–523).
Springer volume 6455 of Lecture Notes in Computer Science.

Stasko, J., Görg, C., & Liu, Z. (2008). Jigsaw: supporting investigative analysis through
interactive visualization. Information visualization, 7, 118–132.

Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The research and development
agenda for visual analytics. Technical Report.

Ullman, D. G., Wood, S., & Craig, D. (1990). The importance of drawing in the mechanical
design process. Computers & graphics, 14, 263–274.

Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R., Murphy, S., & Shneiderman, B.
(2008). Aligning temporal data by sentinel events: discovering patterns in electronic
health records. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (pp. 457–466).

Ware, C. (2012). Information visualization: perception for design. Elsevier.

Waterman, D. A., & Newell, A. (1973). PAS-II: an interactive task-free version of an
automatic protocol analysis system. In Proceedings of the ACM Conference on Artificial
intelligence (pp. 431–445).

40

Wattenberg, M. (2002). Arc diagrams: Visualizing structure in strings. In IEEE Symposium
on Information Visualization (pp. 110–116).

Wattenberg, M., & Viégas, F. B. (2008). The Word Tree, an interactive visual concordance.
IEEE Transactions on Visualization and Computer Graphics, 14, 1221–1228.

Yi, J. S., ah Kang, Y., Stasko, J. T., & Jacko, J. A. (2007). Toward a deeper understanding of
the role of interaction in information visualization. IEEE Transactions on Visualization
and Computer Graphics, 13, 1224–1231.

Yuan, J., & Liberman, M. (2008). Speaker identification on the SCOTUS corpus. Journal
of the Acoustical Society of America, 123, 3878.

Zhao, Z., Badam, S. K., Chandrasegaran, S., Park, D. G., Elmqvist, N., Kisselburgh, L., &
Ramani, K. (2014). skWiki: a multimedia sketching system for collaborative creativity.
In Proceedings of the ACM Conference on Human Factors in Computing Systems (pp.
1235–1244).

41

